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Sequences 

Set: 

 A set is a collection of well-defined objects. 

 Example:   *                                                   + 
           = *               + 
Finite set:  

 A set is said to be finite if the number of elements in it is finite. 

Example:   *             + 
           = *         +. The number of elements it the set is 5. 

Infinite set: 

 A set is said to be an infinite set if the number of elements in it is infinite. 

Example:   *                                 + 
Sequence: 

 A sequence is a set of numbers which has a 1-1 correspondence with the set of 

positive integers. 

(OR) 

 Let       be a function and  ( )      Then                is called the 

sequence in   determined by the function   and is denoted by (  ) or *  +   is called the 

    term of the sequence. The range of the function   which is the subset of   is called the 

range of the sequence. 

Note: 

 The term of the sequence need not be distinct and the range of the sequence may be 

finite or infinite. 

Examples: 

1) The function       given by  ( )    determines the sequence            

2) The function       given by  ( )     determines the sequence             

3) The function       given by  ( )  (  )  determines the sequence 

            and the range of the sequence is *    +  
4) The function       given by  ( )  (  )    determines the sequence 

            and the range of the sequence is *    +  
Note:  

 However(  )  and (  )    are different sequences. 

5) The function       given by  ( )    determines the sequence          . The 

range is * +  This type of sequence is called as a constant sequence. 

6) The function       given by  ( )       determines the sequence 

               

7) The function       given by  ( )  
 

 
 determines the sequence   

 

 
 
 

 
   

 

 
   . 

8) The function       given by  ( )  
   

    
 determines the sequence 

  
 

 
 
 

 
 
 

  
 
 

  
   . 

9) Thefunction       given by  ( )     determines the sequence 

                

10) The function       given by  ( )       determines the 

sequence                 
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Fibonacci Sequence 

 A sequence can also be described by specifying the first few terms and stating a rule 

for determining    in terms of the previous terms of the sequence. 

 

Example:                        and therefore the sequence is       

                  The sequence is called the Fibonacci sequence. 

 

Limit of the sequence: 

Definition:  

 A sequence (  ) is said to tend limit    when given any positive numbers  , however 

small we can always find an integer   such that |    |    for all    . 

Note:  

1) Here  is the limit of the sequence and it is expressed as            or (  )   . 
2) |    | means the numerical value of       
3)    |    |     it can be easily seen that          . 

Example: 

1) The limit of .
 

 
/ is    

2) The limit of .
   

    
/is .

 

 
/  

3)  The limit of .  
(  ) 

 
/is    

4) The limit of .
   

 
/is    

Convergence sequence: 

 A sequence which tends to a finite limit is said to converge and is called a convergent 

sequence. 

Example: 

 The sequence .
 

 
/  .
   

 
/ and .

   

    
/ are all convergent sequences. 

Divergent Sequence: 

 A sequence (  ) is said to diverge to infinity, if given any real number     there 

exists a     such that             We can write this as (  )     
(OR) 

 In the first place, the terms                mmay have the property that if any 

positive number m, however large it may be, there is a positive integer N so that      

when    . 

   
   
     

Example: 

 The sequence ( ) (  ) (  ) and (  )are all divergent sequences. 

  In the second place, the terms may have the property that if any negative 

number    is chosen, however large   may be, there is a positive integer N so that    
   when    . 

   
   
      

Oscillating sequence: 

 When the sequence does not converge and does not diverge to   , it is said to 

oscillate. 

Example: (  )  (  )    
 

Note:  

 If       be the three numbers such that |   |   , then            



UNIT I- SEQUENCES 
 
 

P a g e 3 | 13 

 

 

Theorem 1: 

 A sequence (  ) cannot converge to two distinct limits. 

Proof: 

 Let the sequence (  )converges to two distinct limits        
    is a finite quantity. 

|    |    for all     and |     |    for all      
Now |    |    for all                for all    . 

Therefore N is a finite quantity depending on    Hence there are only a finite number 

of terms of the sequence outside the interval (       )  

Let   is less than   ⁄ |    |  Then the interval (         )  lies outside the 

interval  

(       ) . Hence a finite number of terms lies in the interval (         ) . This 

contradicts that the sequence has also the limit     
 Thus the sequence (  ) cannot converge to two distinct limits. 

 

Theorem 2: 

 If (  ) and (  ) are convergent sequences, then (     ) is also a convergent 

sequence. 

Proof: 

 Let (  ) and (  ) be two convergent sequences. 

 Since (  )is a convergent sequence, let it converge to  , a finite quantity. 

   
   
     

Since (  )is a convergent sequence, let it converge to  , a finite quantity. 

   
   
     

  Let   be an arbitrary positive integer, then there exist numbers         
depending on     such that  

|    |    for all      and |    |    for all       
 Let N be greater than        . Then  

|(     )  (   )|  |         | 
 |    |  |    | 
       ,for all     

 

Since   is an arbitrary,      (     )      
Similarly,       (     )      and hence       (     )     . 
 

Corollary: 

1) If (  ) is a convergent sequence and (  ) is a divergent sequence, then(     )is a 

divergent sequence. 

2) If (  ) and (  ) are both divergent sequence, then(     )may be divergent or 

convergent or oscillate. 

3) If (  ) diverges to   and (  ) diverges to   , then(     )may behave in any 

way.i.e., it may converge to a limit, may oscillate or diverge. 

 

Theorem 3: If (  )    and (  )    , then (    )    . 

Proof: 

 Given (  )    and (  )   . 
Let         and         . 
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Since (  )    and (  )   ,    and    tend to 0. 

  |  |         and  |  |        . 
Let N be greater than   and    . 

Now          (    )(    )                    
                     
|                    | 
|       |  |            | 

|       |  |   |  |   |  |    |     -------(1) 

|       |  |   |  |   |  |    | 
|   |  | |  |   |  | |  |    |   

      
 

( )  |       |  | |  | |   
   (| |  | |   ) 

Since both | | and | | are finite numbers, |       |    , where A is a positive constant. 

Since   is an arbitrary,   is also arbitrary and hence 

|       |         
Thus(    )      

 

Theorem 4: If (  )    and (  )        , then .
  

  
/  

 

 
. 

Proof: 

 Given (  )    and (  )         
 Let         and        . 
Now,    

  
  
 
 

 
 
    
    

 
 

 
 
 (    )   (    )

 (    )
 
             

 (    )
 

 
  
  
 
 

 
 
       
 (    )

 

For the corresponding arbitrary positive constants    there exists numbers       such that 
|  |           and |  |          . 
 Let N be greater than   and      
Now, | (    )|  | ||    | 

Since |   |and |  |     we assume that |    |  
 

 
| | 

Thus  

|    |  
 

 
| |   (   )  

Then  

|
  
  
 
 

 
|  
|   |  |   |

| (    )|
 
| |  | | 

 
  
(| |  | |)

 
 |
  
  
 
 

 
|             

where     is a fixed positive constant. 

Hence .
  

  
/  

 

 
  

 

Theorem 5: Cauchy’s     theorem on limits 

If                 denote a sequence of numbers such that         exists and is 

equal to  , then 
             

 
 also exists and is equal to    

Proof: 

 Let                    Since (  )   , we can find N corresponding to the 

arbitrary constant    such that  
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           for all    . 

                                                Now,              
             
             

…. 

…. 

…. 

           
Adding we get, 

(   )(   )                      (   )(   ) 
Adding    to this inequality, we have  

   (   )(   )        (   )(   ) 
Divide by n, we get,  

  
 
 
(   )(   )

 
 
  
 
 
  
 
 
(   )(   )

 
 

 
  
 
 
 

 
(   )    

  
 
   

  
 
 
 

 
(   )    

Since N is a fixed number,     (   )  (   ) are fixed, we can find a 

number A such that     (   )  (   ) are all less than A. 
   

 
   

  
 
   

  

 
   

Since A is fixed, we can find positive integer     depending on   such that 

       
  

 
         

  

 
     

Hence the inequality becomes,   

    
  
 
      

 |
  
 
  |             

Since   is an arbitrary,   is also arbitrary and hence 

   
   

  
 
    

 

Dedikind’s theorem: 

 If the system of real numbers is divided into two classes A and B in such a way that  

(i) Each classes contains atleast one number. 

(ii) Every number belongs to one class or the other. 

(iii) Every number in the lower class A is less than every number in class B, then there is 

number   such that every number less than   belongs to the lower class A and every 

number greater than  belongs to the upper class B.   itself will belong to one and 

only to one of the classes. 

 

Bounded sequences: 

 Let                denote a sequence of numbers. Then the sequence is said to be 

bounded above if there exists a finite number A with the property that      for all values 

of n. Similarly, if there exists a finite number A with the property that      for all values 

of n, then the sequence is said to be bounded below. The sequence is said to be bounded if it 

is either bounded above or bounded below. 
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The upper and lower limits of a sequence: 

 Let us consider the sequence *  +. If A is a number such that           then A 

is called an inferior number for the sequence *  +  
 Obviously, in this way every number less than A is an inferior number and there may 

exists number greater than A possessing the same property. The inferior numbers are 

unlimited and form an aggregate. If the upper bound of this aggregate of inferior numbers be 

 ,then   is called the lower limit of *  + and we write this as       
Similarly, B is number such that           then A is called a superior number 

for the sequence *  +  
Obviously, in this way every number greater than B is a superior number and there 

may exists number less than B possessing the same property. The superior numbers are 

unlimited and form an aggregate. If the lower bound of this aggregate of superior number be 

 , then   is called the lower limit of *  + and we write this as        
It is easy to see that “If there exist no inferior numbers, then      and if there 

exist no superior numbers, then    ”. 
Example: 

(i) Consider the sequence   
 

 
 
 

 
   

 

 
   . Here 1 is the least upper bound and 0 is the 

greatest lower bound. So it is a bounded sequence. 

(ii) Consider the sequence            . is bounded below but not bounded above. Here 1 

is the greatest lower bound(G.L.B). 

(iii) The sequence                is bounded above but not bounded below. Here -1 

is the least upper bound(L.U.B). 

(iv) The sequence              is a bounded sequence, since    is the G.L.B and   is 

the L.U.B. 

 

Theorem 6:  

The necessary and sufficient condition for the convergence of *  + is that      i.e., 

             . 
Proof: 

(i)  The condition is necessary 

Suppose that       then by definition |    |    for all    . 

            for all     

    is a superior number and     is an inferior number. The difference between 

these two is    and can be made indefinitely small. Further no superior number can be less 

than an inferior number. Hence the lower bound of the superior numbers and the upper bound 

of the inferior numbers must coincide with    

i.e.,              . 
This prove that the condition is necessary. 

 

(ii) The condition is sufficient. 

Suppose now that we are given                 Then since        is the 

lower bound of all the superior numbers. 

         
 i.e.,     is the superior number.  

               
Similarly,        is the upper bound of all the inferior numbers. 
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 i.e.,     is an inferior number.  

               
If   is greater than    and     then we have,            for all     and |   

 |    for all    . Hence     . 
This prove that the condition is sufficient. 

 

Theorem 7:  

Cauchy’s general principle of convergence: 

A necessary and sufficient condition for existence of a limit to the sequence *  +  is that, 

if any positive integer   has been chosen, as small as we please, there shall be a positive 

number m such that |     |    for all      
Proof: 

(i) The condition is necessary. 

Let the sequence converge to the limit    Having to choose  , take it as   ⁄   

We know that there is a positive integer m such that  

|    |  
 
 ⁄  for all    . 

But                 

  |     |  |    |  |    |  
 
 ⁄  
 
 ⁄             

 

(ii) The condition is sufficient. 

For if the condition is satisfied, then there exists an integer m such that  

|     |    for all    . 

                  for all    . 

     is an inferior number and      is the superior number. 

 Hence     (    )  (    )     
i.e.,       . 

But       and   can be taken arbitrarily small. 

            

Thus             . 
Hence the sequence *  +is convergent. 

Monotonic sequence: 

 A sequence in which        for all values of n is called a monotonic increasing 

sequence. Similarly, if         for all values of n is called a monotonic decreasing 

sequence.  

Example: 

(i) *  +  defined by      is monotonically increasing  

(ii) *  +  defined by    
 
 ⁄  is monotonically decreasing. 

(iii) *  +  defined by    (  )
  is neither monotonically increasing or monotonically 

decreasing. 

 

Problems: 

(1)  Show that {
 

   
} is a monotonic increasing sequence. 

Solution: 

 Given: *  +  {
 

   
} 

 Let    
 

   
. Then      

   

   
. 

Now, 
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(   )   (   )

(   )(   )
 

                                  
 

(   )(   )
    

Hence         for all    
Hence showed. 

 

(2)  Prove that {
    

    
} is a monotonic increasing sequence. 

Solution: 

 Given: *  +  {
    

    
}  

  Let    
    

    
.  

Then      
 (   )  

 (   )  
 

           
    

    
.  

Now, 

        
    

    
 
    

    
 

 

                                                               
(    )(    )  (    )(    )

(    )(    )
 

 

                                 
  

(    )(    )
    

Hence proved. 

 

Theorem 8: 

A monotonic sequence always tends to a limit finite or infinite. 

Proof: 

 Suppose that the sequence *  + is a monotonic increasing sequence. 

 Now, all the terms of the sequence                form an aggregate. If this 

aggregate be not bounded above, its is clear that terms continuously increase and tend to plus 

infinity. If it is bounded above, let M be the upper bound.  

 Then we have       for all n and        for at least one value of  , say   so 

that         
But as the sequence is steadily increasing, we have 

       for at least one value of     

 |    |    for at least one value of     

 *  +     
 

Note: 

(i) Thus we have a monotonic increasing if bounded above tends to the upper bound and if 

not bounded above tends to   . 

(ii) Similarly, a monotonic decreasing if bounded below tends to its lower bound and if 

not bounded below tends to   . 
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Examine whether the following sequence are monotonic: 

(a) .  
 

 
/  (b)(   ⁄ )  (c) .

 

  
/  (d) .

(  ) 

 
/ 

(a) .  
 

 
/ 

Given: *  +  .  
 

 
/ 

 Let      
 

 
  

Then       
 

   
 

Now 

          
 

   
   

 

 
 
 

   
  
 

 
 
  

 (   )
    

        , for all values of n. 

Hence given sequence is monotonic decreasing. 

 

(b) (   ⁄ ) 

Given: *  +  (
 
  ⁄ ) 

 Let    
 
  ⁄   

Then      
 
    ⁄  

Now 

        
 
    ⁄     ⁄  

   

    
 

         
  

    
   

        , for all values of n. 

Hence given sequence is monotonic decreasing. 

(c).
 

  
/ 

Given: *  +  .
 

  
/ 

 Let    
 

  
.Then      

 

(   ) 
 

Now 

        
 

(   ) 
 
 

  
 

        
 

(   )  
 
 

  
 
  (   )

  (   )
 
  

(   ) 
    

        , for all values of n. 

Hence given sequence is monotonic decreasing. 

 

(d) .
(  ) 

 
/ 

Given: *  +  .
(  ) 

 
/ 

 Let    
(  ) 

 
.Then      

(  )   

   
 

      Now 

        
(  )   

   
 
(  ) 
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        (  )
 [
 

   
 
 

 
]  (  ) [

  

 (   )
]     

        , for all values of n. 

Hence given sequence is monotonic decreasing. 

 

Problems: 

(1)  Let    
 

   
 
 

   
 
 

   
   

 

  
  Show that the sequence *  + tends to a limit. 

     Solution: 

  Given    
 

   
 
 

   
 
 

   
   

 

  
 

        
 

   
 
 

   
 
 

   
   

 

    
 

Now 

        [
 

   
 
 

   
 
 

   
   

 

    
]  [

 

   
 
 

   
 
 

   
   

 

  
] 

                    
 

   
 
 

   
 
 

   
   

 

  
 
 

    
 
 

    
 
 

   
 
 

   

 
 

   
   

 

  
 
 

    
 
 

    
 
 

   
 

                            
 

    
 

 

 (   )
 
 

   
 

                            
 

    
 
   

 (   )
 
 

    
 

 

 (   )
 

                            
 

 (   )(    )
   

 *  + is a monotonic increasing sequence. 

To show that this sequence tends to a limit, it is necessary o show that *  +is bounded 

above. 

 

Here 

   
 

   
 
 

   
 
 

   
   

 

   
  (

 

   
)        

 Hence (  ) is a bounded monotonically increasing sequence and so it tends to a limit. 

 

(2) Find the limit of the sequence *  + where *  +  .  .
 

 
/
 

/   

Solution:  

 Given: .  .
 

 
/
 

/ 

By binomial theorem, 

   (   )              
        

   

(  
 

 
)
 

     
 

  
(  
 

 
)  
 

  
(  
 

 
) (  

 

 
)   

 
 

  
(  
 

 
) (  

 

 
) (  

(  )

 
)  

This expression contains (n+1) terms. As n increases, the number of terms also 

increases. Hence  *  + is a monotonically increasing sequence. 

Hence either it tends to limit or infinity. Thus in order to show that the expression 

tends to a limit, it is necessary to show that it is bounded. 

i.e., 
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(  
 

 
)
 

   
 

  
 
 

  
 
 

  
   

 

  
 

     
 

 
 
 

  
   

 

  
 

   
  (  ⁄ )

 

    ⁄
 

   
    

    
 

     
 

    
 

                                             (  
 

 
)
 

   
 

    
 

 (  
 

 
)
 

   

Hence .  
 

 
/
 

 is bounded and tends to a limit. This limit is denoted by    Hence 

      .  
 

 
/
 

   

Clearly 

(  
 

 
)
 

          

 

(3)  Let      
 

 
,     -      √      Show that the sequences (  )  (  ) 

converge to a common limit. 

Solution: 

 By hypothesis,      and     are respectively the           between (  )  (  ). 
Also we know that             Hence  

         .   --------(1)  

Moreover the           of two number lie between the numbers. 

                  --------(2) 

                   --------(3) 

                         (by (2) and (3)) 

Hence  (  )  is a monotonically decreasing sequence and (  ) is a monotonically 

increasing sequence. 

Further  

                                
Hence  (  ) is a monotonically decreasing sequence and bounded below by   . 
Similarly, (  )is a monotonically increasing sequence and bounded above by     
Thus (  )    (   )  and (  )    (   )  
Now, 

      
 

 
(     ). 

Taking limit as      we get, 

  
 

 
(   )    
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(4) Let      √       and       Show that the sequences  *     + *   + are both 

monotonic, one decreasing and other increasing. Also prove that *  +  tends to 

(    
 )
 
 ⁄   

Solution: 

 Let           √         √      

   lies between        and    lies between       . 
From this we see that            is a monotonic increasing sequence and 

            is a monotonic decreasing sequence. 

Now  

  
       

  
 

   
 
  
  
 
  
  
 (
  
  
)

 
 ⁄

  

  
       

  
 

   
 
  
  
 (
  
  
)

 
 ⁄

  

  
       

  
 

   
 
  
  
 
  
  
 (
  
  
)

 
 ⁄  
 
 ⁄

 (
  
  
)

 
 ⁄

  

  
       

  
 

   
 
  
  
 
  
  
 (
  
  
)

 
 ⁄

 (
  
  
)

 
 ⁄

 (
  
  
)

 
 ⁄  
 
 ⁄

 (
  
  
)

 
  ⁄

  

Continuing this process, we get,  
    

  
 .
  

  
/
  
  where    is the     term of the sequence   ⁄  

 
 ⁄  
 
 ⁄  
 
  ⁄      

Here  

   
 

 
(         ) 

        ( 
 

 
) (         ) 

          ( 
 

 
) (         ) 

…. 

…. 

      ( 
 

 
) (     ) 

        ( 
 

 
)
   

(     )  ( 
 

 
)
   

(  ⁄  
 
 ⁄ )  (  )

   (
 

  
)  

Hence 

        (  )
   (
 

  
) 

          (  )
   (

 

    
) 

…. 

…. 

      (  )
 (
 

  
)  

Thus 

       
 

  
 
 

  
   (  )   (

 

  
) 
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(
  . 

 

 
/
 

  . 
 

 
/
) 

    
   
   

 

 
  

 

   
   

    
  
 (
  
  
)

 

 
     
   
       (

  
  
)

 

 
    
   
     (    

 )
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Series 

Infinite series: 

 Let   be a function of   which has a definite value for all integral values    An 

expression of the form 

                
In which every term is followed by another term called an infinite series. This series is 

denoted by ∑   
 
   and the sum of the first n terms of series namely               

by     
1)    may tend to a finite limit(say) 

2)    may tend to infinity 

3)    may tend to minus infinity 

4)    may tend to more than one limit 

If    tends to a finite limit    then the series is said to be convergent and   is called its 

infinity. 

The sum to infinity is not a sum in the ordinary senses, but it is a limit of a sum. 

 

Consider the series 

  
 

 
 

 

  
 

 

  
   

 

   
  

 
  

  
 
 

   
 

    
 

Now as     
 

         Hence             

 Therefore, the series is convergent. 

 

If    tends to infinity or mins infinity, then the series is said to be divergent. 

  

Let us consider the series ∑   
 
    where       

             
 

 
 (   )                  

 ∑  

 

   

 ∑               

 

   

 

If    tends to more than one limit, then the series is said to be oscillate. In this case, 

we say that the series oscillates finitely or infinitely according as    oscillates between finite 

limits or between    and      

                    ∑(  )    

 

   

 

                      
                                          

∑(  )   

 

   

                      

                    ∑(  )     
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(   )               

or 

                                                  

∑(  )    

 

   

                        

If the series is divergent or oscillating, it does not posses “sum to infinity” as defined above. 

 Consider the geometric series                 

   
    

   
         

 If | |                       

   
 

   
         

   | |          
   | |                                              

                      ∑   

 

   

  {

                      | |   

             | |   
                           

                  
 

  

 

Note: 

 If the sum to n terms, then    can be expressed by elementary functions, the nature of 

the series can be determined by finding whether the expression for    tends to a limit or 

diverges or oscillates when    . But there are cases in which we have no method to find 

the sum of the first   terms of a series. So we have to find methods for deciding the question 

of convergence when it is impossible or inconvenient to find    in this way. 

 Consider the geometric series                 

   
    

   
         

If | |                       

   
 

   
         

   | |          
   | |                                              
   | |                                              

 

                      ∑   

 

   

  {

                      | |   

             | |   
                           

                   
 

 

 

 

Theorem:1 

If                 is convergent and has the sum “s”, then      
            is convergent and has the sum (             ) where m is 

any positive integer. 

Proof: 
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 Let                 be convergent. 

Given:  

   
   

(             )    

Let                       (                         )  
(             ) 

 Taking limit on both sides, we get,  

   
   

(                     )

    
   

(                         )

    
   

(             )    (             )  

Similarly, if                 diverges, then                  diverges, 

where m is given any positive integer. 

 

Note: 

 The convergence, the divergence and oscillation series is not affected by the addition, 

omission or alteration of a finite no. of terms. 

 

Theorem:2 

If                 is convergent and has the sum “s”, then  (    
               ) and has the sum “ks”. 

Proof: 

 Let                 be convergent. 

Given:  

   
   

(             )    

   
   

(                   )

    
   

 (             )      
   

(             ) 

   
   

(                 )     

  Hence (                   ) converges to   . 

 

Theorem:3 

If                 and                 are both 

convergent, then the series ∑(     ) is convergent and its sum is the sum of the two 

series.  

Proof: 

 Let                 and                 be two convergent 

series. Let the sum of the two series be “s” and “y” respectively. Then 

   

   
   

∑            
   

∑     

    
   

∑(     )  (     )  (     )    (     ) 

Taking limit on both sides, we get,  

         
   

∑(     )     
   

 (     )  (     )    (     )  

                            
   

(             )     
   

(             ) 

                                            
   

∑(     )      
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∑(     )  (   )  

 

Series of positive terms: 

Theorem: 4 

 A series of positive terms cannot oscillate is either convergent or divergent. 

Proof: 

 Let us consider a positive term. 

  Since all the terms are positive,    steadily increases as n increases. 

It tends to a finite limit(or) infinity. Hence the series cannot oscillate. 

  If       for all values of n,    
   

   exists and is equal to “k” or is less than the “k”. 

 Then the series is convergent. 

 

Theorem:5 

If                 is convergent, then    
   

      

Proof: 

 Let                 be a convergent series. 

Since the series is convergent,   

   
   

(             )    

Now, 

   
   

      
   

(             )     
   

(               )         

    
   

      

Hence proved. 

 

Comparison test: 

 If                 and                 are two series of 

positive terms and the second series is convergent and       , where   is constant for all 

values of “ ”, then the first series is also converges and its sum is less than or equal to “ ” 

times that of all the second. 

 Conversely, if ∑   is divergent and         then ∑   is divergent. 

 

Problems: 

1) Prove that   
 

  
 

 

  
 

 

  
   is convergent. 

Proof: 

 Given: ∑     
 

  
 

 

  
 

 

  
   

Here    
 

(   ) 
. Take    

 

  
 

 

       
 

 

         
 

 

      

Since 
 

     is convergent, ∑   is convergent. 

 

2) Prove that the general harmonic series 
 

 
 

 

   
 

 

    
   is divergent, where     

and     are the positive numbers diverges to infinity. 

Solution: 

 Given: ∑   
 

 
 

 

   
 

 

    
    

Here    
 

  (   ) 
. Take    
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 (   )
  

Since 
 

 
 is divergent and      

 

 (   )
  ∑    is divergent. 

 

3) Prove that the series 
 

   
 

 

   
 

 

   
   is divergent. 

Proof: 

  Given: ∑   
 

   
 

 

   
 

 

   
   

 

(    )(    )
 

 

  
   

Since 
 

 
 is divergent and  ∑   

 

  
  ∑    is divergent. 

 

Theorem:6 

 If ∑   is convergent and 
  

  
 tends to a limit other than zero as      then  ∑   

is convergent. 

Proof: 

 Let    
   

  

  
 be    (  being positive   ) 

 On and after a certain value of “n” say “m” the values of the series of numbers. 

  
  

  
 
    

    
 
    

    
    lie in the interval     to     where “   is a very small 

finite the quantity. 

As    
  

  
   

   |
  

  
  |                              

      
  

  
     

  

  
          (   )        

 

∑   is convergent. 

Hence proved. 

 

Theorem:7 

 If ∑   is divergent and 
  

  
 tends to a limit other than zero as      then  ∑   

is divergent. 

Proof: 

 Let ∑   is divergent. 

  Let    
   

  

  
 be    (  being positive   ) 

 As    
   

  

  
   |

  

  
  |                              

      
  

  
         

  

  
   (   )          (   )        

∑   is divergent. 

Hence proved. 

Problems: 

1) Test the convergence of ∑
 

√    
  

Proof: 

  Given: ∑    ∑
 

√    
   

Take ∑   ∑
 

 
 which is divergent. 
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√    
 
 

 
 

√    
 

 

 √  
 
  

 
  

  
 

 

√  
 
  

    
  

  
     

Thus ∑   and ∑   may be both converge or diverge. 

Also ∑
 

 
 is divergent. 

  Hence ∑   is also divergent. 

 

2) Test the convergence of 
 

     
 

 

     
 

 

     
   

Proof:  

  Given: ∑    
 

     
 

 

     
 

 

     
   

 Now    
    

 (   )(   )
 

Take    
 

  . And we know that ∑  is convergent 

 
  

  
 

    

 (   )(   )
    

 (  
 
 )

  (  
 
 ) (  

 
 )

     

Thus ∑   and ∑   may be both converge or diverge. 

Also ∑
 

   is convergent. 

  Hence ∑   is also convergent. 

 

3) Test the convergence or divergence of the series ∑ (√     √    ) 
  

Proof: 

  Given: ∑    ∑ (√     √    ) 
  

  Let    √     √     √     √     
√     √    

√     √    
 

   
     (    )

(√     √    )
 

 

√     √    
 

 

  Let ∑    ∑
 

  
  ∑    is convergent. 

    

 
  

  
 

 

√     √    
    

  

  
 

   

  (√  
 
   √  

 
  )

 

    
   

  

  
    

   

 

(√  
 
   √  

 
  )

 
 

 
      

Thus ∑   and ∑   may be both converge or diverge. 

Also ∑
 

   is convergent. 

  Hence ∑   is also convergent. 

 

4) Discuss the convergence of the series ∑
 

(   ) (   ) 
         

  are all positive 

numbers. 
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Proof: 

  Given: ∑    ∑ (
 

(   ) (   ) 
) 

  

Let    
 

(   ) (   ) 
 

   Take ∑    ∑
 

      

 
  

  
 

    

(   ) (   ) 
 

    

    (  
 
 )

 

(  
 
 )

  

    
   

  

  
    

   

 

(  
 
 )

 

( 
 
 )

       

  ∑   and ∑   may be both converge or diverge. Also ∑   is converges if 

      and diverge if      . Thus ∑   is converges if       and diverges if 
       

 

5) Find whether series in which    (    )
 

 ⁄    is convergent (or) divergent. 

Solution: 

 Given: ∑    ∑ ((    )
 

 ⁄    ) 
  

Let    (    )
 

 ⁄     *(  
 

  )
 

 ⁄

  +   *  
 

 
 
 

  
 

 

   
 

 
(
 

 
  )

  
 

 

(  ) 
 

   +   *
 

    
 

     + 

    *
 

    
 

     +. Take ∑    ∑
 

    

    
  

  
 

*
 

    
 

     +

 
  

 

   [
 

   
 

 

   
  ] 

 [
 

 
 

 

   
  ] 

    
   

  

  
    

   
[
 

 
 

 

   
  ]  

 

 
    

Thus ∑   and ∑   may be both converge or diverge. 

Since ∑
 

  
 is convergent, ∑   is also convergent. 

D’Alembert’s Ratio Test 

Conditions: 

(i) If    
   

    

  
    where      then ∑   is convergent. 

(ii) If    
   

    

  
    where      then ∑   is divergent. 

(iii) If    
   

    

  
    then the test fails. 

 

Problems: 

1) Test for convergence the series ∑
    

    

 
     

     Solution: 
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Given: ∑    ∑
    

    
 
    

  Let    
    

    
  

 Then      
(   )   

      
 

           

      
  

 
    

  
 

           

      
 
    

    
 

  (  
 
  

 
   

 
  )

  (  
 
  )

 
  (  

 
  )

  (  
 
  )

 

    
   

  

  
    

   

(  
 
  

 
   

 
  )

(  
 
  )

 
(  

 
  )

(  
 
  )

 
 

 
    

Hence ∑   is also convergent. 

 

2) Examine the convergence of the series 
 

   
 

   
  

     
    

(    ) 
   

     Solution: 

Given: ∑    
 

  
 

 

  
 

  

  
   

    

(    ) 
   

 Let    
    

(    ) 
  

  Then      
  

(    ) 
 

 
    

  
 

  

(    ) 
 
(    )    

    
 

 

    
   

  

  
    

By D’Alembert’s Ratio Test,  

(i) If    
   

    

  
    where      then ∑   is convergent. 

(ii) If    
   

    

  
    where      then ∑   is divergent. 

(iii) If    
   

    

  
    then the test fails. 

In this condition,  

∑    
 

  
 

 

  
 

  

  
   

    

(    ) 
   

Now, 

   
    

(    ) 
 

 

Take ∑    ∑
 

    

 

  

  
 

  

(    ) 
 

 

  (  
 
  ) 

 

    
   

  

  
    

   

 

  (  
 
  ) 
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Thus ∑   and ∑   may be both converge or diverge. 

Since ∑   is converge only if     and diverge if     ∑   is converge 

only if     and diverge if     for all values of     
Also if      then the series converges only if     and diverge if     for 

all values of    
 

3) Discuss the convergence of the series 
 

   
 

 

      
 

        

Solution: 

 Given ∑    
 

   
 

 

      
 

        

Let    
 

     
. Then      

 

  (   )    
 

 
    

  
 

 

  (   )    
 (     )  

 
     

 
     (  

 
 )

 

  If      the series becomes 
 

 
 

 

 
 

 

 
  

 

 
 which is divergent. 

If           
 

   
 

 

 
 

                       
 

      
 

 
 

                       
 

      
 

 
 and so on 

Hence ∑   is convergent only if     and divergent if      
 

4) Examine the convergence of the series ∑ (
 

   
)
 

 ⁄ 
      

 

5) Settle the range of values of x for which the following series converge: 

(a) ∑
  

     

(b) 
 

 
 

   

    
 

     

       
   

(c) (
 

 
)
 

 (
   

   
)
 

 (
     

     
)
 

   

(d) 
 

 
 

   

   
 

     

     
   

 

Raabe’s Test: 

Theorem:1 

 If ∑   and ∑   are two series of positive terms and if 
    

  
 

    

  
 for all values 

of   after a certain stage, show that ∑   will converge if ∑   converges. 

Proof: 

 Since the omission of a finite number of terms form a series does not affect 

convergence. We can assume that the inequality holds for all positive integer values of 

  Thus  
  

  
 

  

  
 
  

  
 

  

  
 
  

  
 

  

  
   

             (  
  

  
 

  

  
 

  

  
  )    (  

  

  
 

  

  
 

  

  
  ) 

   (  
  

  
 

  

  
 

  

  
  ) 



UNIT II- SERIES 
 
 

P a g e  10 | 14 

 

   (  
  

  
 

  

  
 

  

  
  ) 

 
  

  

(          ) 

Since 
  

  
 is a constant, and ∑   is convergent and it follows that ∑   is convergent. 

 

Theorem:2 

 If ∑   diverges and if 
    

  
 

    

  
 then ∑   diverges.  

Proof: 

 We have  
  

  
 

  

  
 
  

  
 

  

  
 
  

  
 

  

  
   

             (  
  

  
 

  

  
 

  

  
  )    (  

  

  
 

  

  
 
  

  
 

  

  
 
  

  
 
  

  
  ) 

   (  
  

  
 

  

  
 
  

  
 

  

  
 
  

  
 
  

  
  ) 

   (  
  

  
 

  

  
 

  

  
  ) 

 
  

  

(          ) 

Since 
  

  
 is a constant, and ∑   is divergent and it follows that ∑   is divergent. 

 

Raabe’s Test: 

 Let us compare the series ∑   with the series ∑
 

    

Proof: 

 ∑
 

   is convergent when     and divergent if    . 

∑   is convergent,   
    

  
 

  

(   ) 
  

        
  

    
 

(   ) 

  
   

        
  

    
 (  

 

 
)    

 

 
 

 (   )

   
  (                   )  

          (
  

    
  )    

 (   )

  
   

            
   

 (
  

    
  )    

But the auxiliary series is convergent if     which shows that ∑   is 

convergent when      

And ∑   is divergent if 
  

    
 

  

(   ) 
 

        
  

    
 (  

 

 
)    

        
  

    
 (  

 

 
)    

 

 
 

 (   )

   
  (                   )  

          (
  

    
  )    

 (   )
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 (
  

    
  )     which shows that ∑   is divergent when      

 This test can be enunciated as follows: 

  The series whose general terms    is convergent or divergent according as 

   
   

{ (
  

    
  )}           

This is known as Raabe’s test. 

 

Examples: 

1) Prove that the series   
 

 
 
 

 
 

     (   )

     (   )
 

     (   )(   )

     (   )(   )
   is convergent if   

      and     
 

 
  

Proof: 

 Let    denote the     terms of the series. Then for      

   
      (    )

      (    )
  
 (   )(   ) (     )

 (   )(   ) (     )
 

 

Hence, 

    

  
 

(    )(     )

  (     )
 

 
    

  
 

(  
 
  ) (  

   
 )

(  
   

 )
 

Thus D’Alembert’s ratio test fails. 

Again,  

  

    
   

((       )  
   

 )

 (  
 
 ) (  

   
 )

  

 

Hence, 

   
   

{ (
  

    
  )}      

 

 
   

 Thus the series converges if     
 

 
    

 

2) Discuss the convergence of the series   
(  ) 

  
  

(  ) 

  
     

(  ) 

(  ) 
     

     Solution: 

 Leaving the first term    
(  ) 

(  ) 
   

Hence, 

    

  
 

(   )

 (    )
  

 

 
    

  
 

 

 
 

 Hence the series converges if     and diverges if      
If      then D’Alembert’s ratio test fails. 
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Hence, 

   
   

{ (
  

    
  )}     

   
, (

 (    )

 (   )
  )-     

   
 

  

 (   )
  

 

 
    

 

Thus, the series diverges if      
 

Corollary:1 

 The series whose general terms    is convergent or divergent according as 

   
   

{ (
  

    
  )}           

Corollary:2 

 The series whose general terms    is convergent or divergent according as 

   
   

{ (
  

    
  )         }           

Do it: 

1) Test for convergency and divergency of the series   
  

  
  

(  ) 

  
   

(  ) 

  
    

(  ) 

(  ) 
       

2) Examine the convergence of (
 

 
)
 

 (
   

   
)
 

 (
     

     
)
 

   

 

Geometric series: 

 Consider the geometric series             

Let                
    

   
 

Case(i)  

            (  )    (  )  
 

   
  

  the given series converges to the sum 
 

   
 

Case(ii)  

          (  )  
    

   
 . Also (  )             

  the given series diverges to the sum    
 

Case(iii)  

                                    (       )     (  )  ( ) 

           (  )             

  the given series diverges to the sum    
Case(iv)  

                                        

   (  )  {
               
              

            (  ) oscillates finitely. 

   Hence the given series oscillates finitely. 

Case(v)  

            (  ) oscillates infinitely and hence (  ) oscillates infinitely. 

   Hence the given series oscillates infinitely. 

    

Thus the geometric series converges if      , diverges if     and oscillates if 
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Theorem: 

Discuss the convergence of the series ∑
 

  
 
     (i.e., 

 

  
 

 

  
 

 

  
   is convergent when k 

is greater than unity and divergent when k is equal to or less than unity) 

Proof: 

 Given ∑
 

  
 
    

 

Case(i): when     

 The first term of the given series is 
 

  
    

Consider the following, 
 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

    
  

And 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

    
 

 

(  )   
 (

 

    
)
 

  

 

Similarly, 

 
 

  
 

 

  
 

 

   
 

 

   
 

 

   
 

 

   
 

 

   
 

 

   
 

 

   

 
 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

    
 

                           
 

  (   )
 (

 

    
)
 

  

 

 

Hence the whole term in the series, i.e.,  

 

  
 (

 

  
 

 

  
)  (

 

  
 

 

  
 

 

  
 

 

  
)    

 

 
 

 

    
 (

 

    
)
 

 (
 

    
)

 

   

   ( ) 

 

  

The right-hand series is a geometric series with common ratio 
 

     which is less than 

  as      We know that any geometric series is convergent if the common ratio is less than 

   Hence the series in the right-hand series of  ( ) is convergent. 

Hence by comparison test, ∑
 

  
 
    is convergent      

Case(ii): when     

Then the given series is equal to ∑
 

  
 
      

 

 
 

 

 
    

Consider the following, 
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We can group the series as follows: 

  
 

 
 (

 

 
 

 

 
)  (

 

 
 

 

 
 

 

 
 

 

 
)      

 

 
 

 

 
 

 

 
      (

 

 
)    (

 

 
)  

 ∑
 

 

 

   

   
 

 
      

 i.e., the series greater that 
 

 
    which increase indefinitely with    

 

Hence the whole term in the series, i.e.,  

  
 

 
 (

 

 
 

 

 
)  (

 

 
 

 

 
 

 

 
 

 

 
)    ∑

 

 

 

   

               

 

Case(iii): when     

In this case, 
 

   
 

 
  Thus every term of the series ∑

 

  
 
   (after the first term) is 

greater than the corresponding term of the known divergent series ∑
 

 
 
   . Thus ∑

 

  
 
    is 

divergent when      
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Unit III 

Cauchy’s condensation test: 

If (𝒏) is positive, for all positive integral values of 𝒏 and continually diminishes 

as 𝒏 increases and if “𝒂” be any positive integer, then two infinite series 

(𝟏) + 𝒇(𝟐) + 𝒇(𝟑) + ⋯ + 𝒇(𝒏) + ⋯ and 𝒂 𝒇(𝒂) + 𝒂𝟐𝒇(𝒂𝟐) + ⋯ . +𝒂𝒏(𝒂𝒏) + ⋯ are 

both convergent or both divergent. 

Proof: 

Let ∑ (𝑛) = (𝑓(1) + 𝑓(2) + 𝑓(3) + ⋯ + 𝑓(𝑎)) + (𝑓(𝑎 + 1) + 𝑓(𝑎 + 2) + 

(𝑎 + 3) + ⋯ + 𝑓(𝑎2)) + (𝑓(𝑎2 + 1) + 𝑓(𝑎2 + 2) + 𝑓(𝑎2 + 3) + ⋯ + 𝑓(𝑎3)) + ⋯ + 

((𝑎𝑛−1 + 1) + 𝑓(𝑎𝑛−1 + 2) + 𝑓(𝑎𝑛−1 + 3) + ⋯ + 𝑓(𝑎𝑛)) 
Let 𝑣𝑛 denote the terms of the 𝑛𝑡ℎ group 

(𝑎𝑛−1 + 1) + 𝑓(𝑎𝑛−1 + 2) + 𝑓(𝑎𝑛−1 + 3) + ⋯ + 𝑓(𝑎𝑛) 
The number of terms in this group is 𝑎𝑛 − 𝑎𝑛−1. 
Since (𝑛) is a decreasing function, 

(𝑎𝑛 − 𝑎𝑛−1)(𝑎𝑛) ≤ 𝑣𝑛 ≤ (𝑎𝑛 − 𝑎𝑛−1)𝑓(𝑎𝑛−1) 
⇒ 

1 
(𝑎 − 1)𝑛𝑓(𝑎𝑛) ≤ 𝑣   ≤ (𝑎 − 1)𝑎𝑛−1𝑓(𝑎𝑛−1) 

 

𝑎 𝑛 

Now, if ∑ 𝑎𝑛(𝑎𝑛) is convergent, then so is  ∑ 𝑣𝑛(taking the right-hand half of last 

inequality) 

 

 

inequality) 

∑ (𝑛)  is convergent. 

if ∑ 𝑎𝑛𝑓(𝑎𝑛) is divergent, then so is ∑ 𝑣𝑛(taking the left-hand half of first 

 
∑ (𝑛) is divergent. 

⇒ ∑ (𝑛) & ∑ 𝑎𝑛𝑓(𝑎𝑛) 𝑎re both convergent or both divergent. 
 

Problems: 

1) Show that the series 

Solution: 

 
𝟏 + 

𝟏
 
𝟐 

 
+ 

𝟏 
+ ⋯ 

𝟑 

 
is divergent. 

Let (𝑛) = 
1 

𝑛
. 

 

1 
Then, ∑ (𝑛) = ∑ 

𝑛 
& ∑ 𝑎𝑛(𝑎𝑛) = ∑ 2𝑛𝑓(2𝑛) , by taking a = 2. 

⇒ ∑ 2𝑛 
1

 
2𝑛 

= ∑ 1 = 1 + 1 + ⋯ 

1 
⇒ ∑ 

𝑛
 and ∑ 1  behave alike. 

But 1 + 1 + ⋯ is divergent. 
1 

⇒ ∑ 
𝑛 

is divergent. 
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𝑘. 

) (2 + ) 

2𝑛 

2𝑛) 
  

 

2) Examine the convergence of the series 

a) ∑ 
𝟏

 
𝒏𝒌 

Solution: 

Let (𝑛) =
 1  

 
𝑛 

Then, ∑ (𝑛)   &  ∑ 𝑎𝑛𝑓(𝑎𝑛) behave alike. 

⇒ ∑ 𝑎𝑛(𝑎𝑛) = ∑ 2𝑛 
1

 
(2𝑛)𝑘 

1 
= ∑ 

2(𝑘−1) 

 

, by taking a = 2. 

which is a geometric series and it is convergent or divergent according to 𝑘 > 1 or k ≤ 1. 
⇒ ∑ 

1
 

𝑛𝑘 is convergent or divergent according to 𝑘 > 1 or k ≤ 1. 
 

b) 𝟏 
𝟏.𝟐 

+ 
𝟏 

𝟑.𝟒 
+ 

𝟏 

𝟓.𝟔 
+ ⋯ + 

𝟏 
+ ⋯ 

(𝟐𝒏+𝟏)(𝟐𝒏+𝟐) 

Solution: 
1 

Let (𝑛) = 
(2𝑛 + 1)(2𝑛 + 2)

.
 

Then, ∑ (𝑛)   &  ∑ 𝑎𝑛𝑓(𝑎𝑛) behave alike. 

⇒ ∑ 𝑎𝑛(𝑎𝑛) = ∑ 2𝑛 
1

 
(2𝑛 + 1)(2𝑛 + 2) 

⇒ ∑ 𝑎𝑛(𝑎𝑛) = ∑ 
1

 

 

, by taking a = 2. 

 

2𝑛 (2 +
 1 2  
2𝑛 

1 2𝑛 

Let 𝑈𝑛 = 
2𝑛 (2 + 

 1 
) (2 + 

1 

 2 

2𝑛) 

⇒ lim 𝑈𝑛 = 0. 
𝑛→∞ 

 

c) 𝟏 + 
𝟏
 
𝟑 

 

+ 
𝟏 

+ ⋯ 
𝟓 

⇒ ∑ 
(2𝑛 + 1)(2𝑛 + 2) 

is convergent. 

Solution: 
1 

Let (𝑛) = 
(2𝑛 − 1)

. 

Then, ∑ (𝑛)   &  ∑ 𝑎𝑛𝑓(𝑎𝑛) behave alike. 

⇒ ∑ 𝑎𝑛(𝑎𝑛) = ∑ 2𝑛 
1

 
(2. 2𝑛 − 1) 

2𝑛 

 

, by taking a = 2. 

1 
⇒ ∑ 𝑎𝑛𝑓(𝑎𝑛) = ∑ 

 
1 

= ∑ 

2𝑛 (2 − 
1 

 
1 

 
 

 1 

2𝑛) 

Let 𝑈𝑛 =  
(2 − 

 1 
2𝑛 

⇒ lim 𝑈𝑛 = 
𝑛→∞ 2 

1 

≠ 0. 

⇒ ∑ 
(2𝑛 − 1) 

is divergent. 

(2 − 

) 
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𝑛 

 

d) 
𝟏.𝟐 

𝟑.𝟒.𝟓 
+ 

𝟐.𝟑   
+ ⋯

 
𝟒.𝟓.𝟔 

Solution:  
(𝑛 + 1) 

Let (𝑛) = 
(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

.
 

 
Then, ∑ (𝑛)   &  ∑ 𝑎𝑛𝑓(𝑎𝑛) behave alike. 

(1 +
 1 

) 

⇒ ∑ 𝑎𝑛𝑓(𝑎𝑛) = ∑ 2𝑛 
 2 3 4  ) (1 + ) (1 + ) 

, by taking a = 2. 

 
 

Let 𝑈 = 

2𝑛 

(1 +
 1 

) 
2 

2𝑛 2𝑛 

 
⇒ lim 𝑈 

 
 

= 1 ≠ 0. 
𝑛 (1 + 

 2 
) (1 + 

 3 
) (1 + 

 4 
) 𝑛→∞    

𝑛
 

2𝑛 2𝑛 2𝑛 

 

 
e) ∑ 

𝟏
 

𝒏(𝐥𝐨𝐠 𝒏)𝒑 

Solution: 

(𝑛 + 1) 
⇒ ∑ 

(𝑛 + 2)(𝑛 + 3)(𝑛 + 4) 
is divergent.

 

 
 
1 

Let (𝑛) = 
𝑛(log 𝑛)𝑝 . 

 
Then, ∑ (𝑛)   &  ∑ 𝑎𝑛𝑓(𝑎𝑛) behave alike. 

⇒ ∑ 𝑎𝑛(𝑎𝑛) = ∑ an 1
 

an(log 𝑛)𝑝 
, by taking n = an. 

⇒ ∑ 𝑎𝑛(𝑎𝑛) = ∑ 
1

 
(log 𝑎𝑛)𝑝 

⇒ ∑ 𝑎𝑛(𝑎𝑛) = ∑ 
1

 
(𝑛 log 𝑎)𝑝 

 

1 1 
Then, ∑ 

(log 𝑛)𝑝 & ∑ 
(𝑛 log 𝑎)𝑝 both converge or diverge together and 

the second series becomes, 
 

1 1 1 1 
∑ 

(𝑛 log 𝑎) 
= ∑ 

𝑛𝑝(log 𝑎)𝑝 
= 

log 𝑎𝑝 
∑ 

𝑛𝑝 
 

1 
⇒ ∑ 

(log 𝑛)𝑝 converge or diverge according to p, 

1 1 
i. e. , if p ≤ 1, then ∑ 

𝑛𝑝 is divergent and if p > 1, then ∑ 
𝑛𝑝 is divergent. 

(1 + 
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2𝑛 
(1 + 

2𝑛 

𝑛 

𝑛=1 

𝑛 

𝑛=1 

 

𝟐 𝟑 𝟒 
𝒇) 

𝟏𝒑 + 
𝟐𝒑 + 

𝟑𝒑 + ⋯ 

Solution: 

Let (𝑛) = 
(𝑛 + 1) 

𝑛𝑝 . 

Then, ∑ (𝑛)   &  ∑ 𝑎𝑛𝑓(𝑎𝑛) behave alike. 
2(2𝑛 + 1) 

⇒ ∑ 𝑎𝑛𝑓(𝑎𝑛) = ∑ 
2𝑛𝑝 

, by taking a = 2. 

 
⇒ ∑ 𝑎𝑛𝑓(𝑎𝑛) = ∑ 

(𝑛 + 1) 

2𝑛. 2𝑛 (1 + 
 1 

) 
 

 

2𝑛𝑝 

 1  

= ∑  2𝑛) 

2𝑛𝑝. 2−2𝑛 

(1 +
 1 

) 

= ∑ 
2(𝑝−2) 

⇒ ∑ 
𝑛𝑝 is convergent if p > 1 and is divergent, if p ≤ 1. 

 
 

Cauchy’s root test: 
∞ 
𝒏=𝟏 𝑼𝒏 is a series of terms, Prove that the series is convergent or divergent 

𝟏 

according as 𝐥𝐢𝐦 𝑼𝒏𝒏 < 𝟏 𝐨𝐫 > 𝟏. 
𝒏→∞ 

Proof:  
1 

Case(i) lim 𝑈𝑛𝑛 = 𝑙, 𝑙 < 1. 
𝑛→∞ 

Hence we can choose 𝜖, positive and sufficiently small, so that 𝑙 + 𝜖 < 1. 
1 1 

 

Since lim 𝑈𝑛𝑛 = 𝑙, we can find a natural number “m” so large so that 𝑈𝑛 differ 
𝑛→∞ 𝑛 

from *** by less than 𝜖, so long 𝑛 ≥ 𝑚. 
1 

∴ 𝑈𝑛 < 𝑙 + 𝜖 ⇒ 𝑈𝑛 < (𝑙 + 𝜖)𝑛. 
Hence from and after the 𝑚𝑡ℎ term of the series ∑∞ 
series ∑(𝑙 + 𝜖)𝑛 which is convergent since 𝑙 + 𝜖 < 1. 

𝑈𝑛 are less than those of the geometric 

∞ 
𝑛=1 

1 
𝑈𝑛 is convergent. 

Case(ii) lim 𝑈𝑛𝑛 = 𝑙, 𝑙 > 1. 
𝑛→∞ 

Hence we can choose 𝜖, positive and sufficiently small, so that 𝑙 − 𝜖 > 1. 
 

1 1 
 Since lim 𝑈𝑛𝑛 = 𝑙, we can find a natural number “m” so large so that 𝑈𝑛 differ 

𝑛→∞ 𝑛 

from *** by less than 𝜖, so long 𝑛 ≥ 𝑚. 
1 

∴ 𝑈𝑛 < 𝑙 − 𝜖 ⇒ 𝑈𝑛 > (𝑙 − 𝜖)𝑛. 

Hence from and after the 𝑚𝑡ℎ term of the series ∑∞ 𝑈𝑛 are greater than those of the 

geometric series ∑(𝑙 + 𝜖)𝑛 which is divergent since 𝑙 − 𝜖 > 1. 
∞ 
𝑛=1 𝑈𝑛 is divergent. 

1 
∑ 𝑢𝑛 is convergent, if 𝑙 < 1. 

Thus lim 𝑈𝑛𝑛 = { ∑ 𝑢𝑛 is divergent, if 𝑙 > 1. 
𝑛→∞ 

the test fails, if 𝑙 = 1. 

If ∑ 

⇒ ∑ 

⇒ ∑ 
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𝑛 

𝑛 

𝑛 

1 

1 

 

Problems: 

1) Test the convergence of the following series: 

a) 𝒂 + 𝒃 + 𝒂𝟐 + 𝒃𝟐 + 𝒂𝟑 + 𝒃𝟑 + ⋯ 
Solution: 

 

Let 𝑈𝑛 = {𝑎 

1 
2, when n is odd 

𝑛 

𝑏2 when n is even 
1 𝑛+ 1/𝑛 

1 

⇒ 𝑈𝑛 = 
(𝑎 2) 

1 

, when n is odd 
or 

𝑛 𝑛 

𝗅 
(𝑏2 ) 

 1   1+ 

, when n is even 

⇒ 𝑈𝑛 = {𝑎 

1 

2𝑛, when n is odd or 

𝑏2 when n is even 
 1   1+ 

⇒   lim 𝑈𝑛 = {𝑎 2𝑛, when n is odd or 
𝑛→∞    𝑛 

1 

1 
𝑏2 when n is even 

1 

⇒ lim 𝑈𝑛 = {𝑎2, when n is odd or 
𝑛→∞     𝑛 1 

𝑏2 when n is even 
Thus the series converges if 0 < 𝑎 < 1, 0 < 𝑏 < 1 and diverges if 𝑎 ≥ 1 𝑜𝑟 𝑏 ≥ 1. 

 

b) ∑ (
(𝒏+𝟏)(𝒏+𝟐)…(𝒏+𝒏)

)
 

𝒏𝒏 

Solution:  

Let 𝑈𝑛 = 

 
(𝑛 + 1)(𝑛 + 2) … (𝑛 + 𝑛) 

 
 

𝑛𝑛 
1 

 

 1 (𝑛 + 1)(𝑛 + 2) … (𝑛 + 𝑛) 𝑛 

⇒ 𝑈𝑛 = ( 

 
1 

𝑛𝑛 

1 2 

) 

1 
𝑛 𝑛 

⇒ 𝑈𝑛 = (𝑛𝑛 
(1 + 𝑛) (1 + 𝑛) … (1 + 𝑛) 

𝑛 𝑛𝑛 
) 

1 
1 

⇒ lim 𝑈𝑛 = lim ((1 + 
1 

) (1 + 
 

2 
) … (1 + 

 

𝑛 𝑛 
)) 
 

𝑛→∞    𝑛 𝑛→∞ 𝑛 𝑛 𝑛 
Let this limit be "𝑙". 

 
⇒ lim ((1 + 

𝑛→∞ 

 

1 
) (1 + 

𝑛 

 

2 
) … (1 + 

𝑛 

 

1 

𝑛 𝑛 

𝑛
)) 

 

 
= 𝑙 

Taking log on both sides, 

1 
⇒ log { lim ((1 + 

 

 
) (1 + 

 

2 
) … (1 + 

 
1 

𝑛 𝑛 
)) 

 

 
} = log 𝑙 

𝑛→∞ 𝑛 𝑛 𝑛 
𝑛 

𝑟 
⇒ log 𝑙 = lim ∑ (1 + 

𝑛→∞ 
𝑟=1 

𝑛
) 

𝑛+ 

or 
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0 

𝑛 

 

1 

⇒ log 𝑙 = ∫ log(1 + 𝑥) 𝑑𝑥 
0 

𝑢 = log(1 + 𝑥) ∫ 𝑑𝑣 = ∫ 𝑑𝑥 

1 
𝑑𝑢 = 

1 + 𝑥 
𝑑𝑥 𝑣 = 𝑥 

By the formula, ∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢, we have, 

log 𝑙 = (𝑥 log(1 + 𝑥))1 − ∫ 𝑥. ( 
1

 

 
 
 
 
 
 
 

 
) 𝑑𝑥 

0 

1 𝑥 
1 + 𝑥 

⇒ log 𝑙 = log 2 − ∫ 
0 

 
 

1 + 𝑥 
𝑑𝑥 

1 𝑥 + 1 − 1 
⇒ log 𝑙 = log 2 − ∫ 𝑑𝑥 

0 
1 𝑥 + 1 

1 + 𝑥 
1 𝑥 

⇒ log 𝑙 = log 2 − ∫ 
0 

 
 

1 + 𝑥 
𝑑𝑥 − ∫ 

0 

 
 

1 + 𝑥 
𝑑𝑥 

⇒ log 𝑙 = log 2 − (𝑥 − log(1 + 𝑥))1 + 𝑐 
⇒ log 𝑙 = log 2 − [(1 − log 2) − (0 − log 1)] 

⇒ log 𝑙 = log 2 − [(1 − log 2)] 
⇒ log 𝑙 = 2 log 2 − 1 = log𝑒 4 − log𝑒 𝑒 

4 4 
⇒ log 𝑙 = log𝑒 (

𝑒
) ⇒ 𝑙 = 

𝑒
. 

Hence ∑ 𝑈𝑛 diverges. 

2) Examine the convergence of the following series: 

a) ∑ 
𝒙𝒏

 
𝒏𝒏 

Solution: 
𝑥𝑛 

Let 𝑈𝑛 = 
𝑛𝑛 

1 
1 

⇒ 𝑈𝑛 = ( 
𝑥𝑛   𝑛 

𝑛𝑛) 
𝑥 

= 
𝑛

 
1 

⇒ lim 𝑈𝑛 = 0 < 1 
𝑛→∞    𝑛 

 
 
 

b) ∑  
𝟏 

(𝒍𝒐𝒈 𝒏) 

Solution: 

Hence ∑ 𝑈𝑛 converges. 

 

 
 

1 
Let 𝑈𝑛 = 

(log 𝑛) 

1 
1 

⇒ 𝑈𝑛 = ( 
1 

)
 
= 

1 
= 0 < 1 

  

𝑛 (log 𝑛) ∞ 
Hence ∑ 𝑈𝑛 converges. 
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𝑛 

𝑛 

1 

 

𝒏 
 

c) ∑(√𝒏 − 𝟏) 
Solution: 

 

 

 
 

𝑛 
Let 𝑈𝑛 = (√𝑛 − 1) 

1 

⇒ 𝑈𝑛 = √𝑛 − 1 
1 

⇒ lim 𝑈𝑛 = √∞ − 1 = ∞ − 1 = ∞ 

 
 

d) ∑ 
𝟏

 

𝟏 𝒏𝟐 
(𝟏+ ) 

𝒏 

Solution: 

𝑛→∞ 𝑛 

Hence ∑ 𝑈𝑛 diverges. 

 

 

 
1 

Let 𝑈𝑛 =  
 

1 𝑛
2 

 

1 

⇒ 𝑈𝑛 = 

(1 + 𝑛) 

1 
 

 

1 𝑛 

(1 + 𝑛) 

⇒ lim 𝑈𝑛 = 
1 

< 1 
 

𝑛→∞    𝑛 𝑒 
Hence ∑ 𝑈𝑛 converges. 

 
3) Investigate the behaviour of the series whose general term is 𝒏! . 

𝒏𝒏 

Solution: 
𝑛! 

Let 𝑈𝑛 = 
𝑛𝑛 

1 
1 

⇒ 𝑈𝑛 = ( 
𝑛! 

)
𝑛

 
 

𝑛 𝑛𝑛 

1 
1 1 

⇒ lim 𝑈𝑛 = lim ( 
𝑛! 

)
𝑛 

= lim (
1 2

 
 

   

𝑛  𝑛 ) 
 

 

𝑛→∞ 𝑛 
 

𝑛! 

𝑛→∞ 
1 
𝑛 

𝑛𝑛 

1 

𝑛→∞ 
𝑛 𝑛 

. 
𝑛 

𝑛 

… 
𝑛
 

1 

Now log lim ( 
𝑛→∞   𝑛 𝑛

) = lim 
𝑛→∞ 𝑛 

∑ log 
𝑛 

𝑛=1 

= ∫ log 𝑥 𝑑𝑥 
0 

𝑢 = log 𝑥 ∫ 𝑑𝑣 = ∫ 𝑑𝑥 

1 
𝑑𝑢 = 

𝑥 
𝑑𝑥 𝑣 = 𝑥 

By the formula, ∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢, we have, 
1 

log lim ( 
𝑛!

)
𝑛 

= (𝑥 log 𝑥)1 − ∫ 𝑥. (
1

) 𝑑𝑥 
𝑛→∞ 𝑛𝑛 

0 𝑥 

Hence ∑ 𝑈𝑛 diverges. 
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𝑛 

𝑛 

 

 

4) Show that the series ∑ ( 

Solution: 

((𝒏+𝟏)𝒓)
𝒏

 

𝒏𝒏+𝟏 ) is convergent if 𝒓 < 𝟏 and divergent if 𝒓 ≥ 𝟏. 

 

 
Let 𝑈𝑛 = 

𝑛 

((𝑛 + 1)) 
 

 

𝑛𝑛+1 
1 

⇒ 𝑈𝑛 = 
(𝑛 + 1)𝑟 

 
 

𝑛𝑛+1 
1 

⇒ lim 𝑈𝑛 = 𝑟 
𝑛→∞    𝑛 

If 𝑟 < 1, the series is convergent. 

If 𝑟 > 1, the series is divergent. 
If 𝑟 < 1, the test fails. 

𝑛 
((𝑛 + 1)) 

Now, 𝑈𝑛 =  
 

𝑛𝑛+1 

1 𝑛 

⇒ 𝑈𝑛 = 
(1 + 𝑛) 

𝑛 
1 

Take 𝑉𝑛 = 
𝑛

 

⇒ 
𝑈𝑛 

𝑉𝑛 

1 𝑛 

= 
(1 + 𝑛) 

𝑛 

 
x n = (1 + 

1 𝑛 

) 
𝑛 

⇒ lim 
𝑈𝑛 

= 𝑒. 
𝑛→∞ 𝑉𝑛 

Hence ∑ 𝑈𝑛 & ∑ 𝑉𝑛 both converge or diverge together. But ∑ 𝑉𝑛 is divergent if 𝑟 > 1 
and convergent if 𝑟 < 1 implies ∑ 𝑈𝑛 is divergent if 𝑟 > 1 and convergent if 𝑟 < 1. 

 

Alternating series: 

I. Absolutely convergent series: 

The series ∑ 𝑼𝒏 containing positive and negative terms, is said to be absolutely 

convergent, if the series formed by the numerical values of the terms of ∑ 𝑼𝒏. i.e., 

∑ |𝑼𝒏| is convergent. 

Example: 
The series 1 − 

1 
+ 

1 
− 

1 
+ ⋯ is absolutely convergent, since the series 1 + 

1 
+ 

22 32 42 22 

1  
+ 

1 + ⋯ is convergent. 
32 42 

 

Problems: 
1) Test the convergence of the series: 

(a) ∑ 
𝟐𝒏𝒏!

 
𝒏𝒏 

Solution: 

 

 

 

 

 
𝐿𝑒𝑡 𝑈𝑛 = 

 
 
 
 
2𝑛𝑛! 

 
 

𝑛𝑛 
1 

1 

⇒ 𝑈𝑛 = ( 
2𝑛𝑛!  𝑛 

𝑛𝑛 ) 
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1 

 

1 
1 

⇒ 𝑈𝑛 = 2 (
1.2.3 … 𝑛

)
 

𝑛 𝑛. 𝑛 … 𝑛 
1 

1 

⇒ lim 𝑈𝑛 = 2 lim (
1.2.3 … 𝑛

)
𝑛

 

𝑛→∞    𝑛 

 
1 

𝑛→∞ 

 
𝑛 

1 

𝑛. 𝑛 … 𝑛 
 

𝑛 1 
⇒ lim 𝑈𝑛 = 2 lim ∑ log 

 

= 2 ∫ log 𝑥 𝑑𝑥 
 

𝑛→∞     𝑛 𝑛→∞ 𝑛 𝑛 
𝑟=1 

𝑢 = log 𝑥 ∫ 𝑑𝑣 = ∫ 𝑑𝑥 

1 
𝑑𝑢 = 

𝑥 
𝑑𝑥 𝑣 = 𝑥 

By the formula, ∫ 𝑢 𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣 𝑑𝑢, we have, 

2 ∫ log 𝑥 𝑑𝑥 = (𝑥 log 𝑥)1 − ∫ 𝑥. (
1

 

 
 
 
 
 

) 𝑑𝑥 

0 
0 𝑥 

1 2 2 
⇒ 2 ∫ log 𝑥 𝑑𝑥 = 2[0 − (𝑥)1] = −2 loge 𝑒 = 2 loge 𝑒−1 = 2𝑒−1 = = . 

  

0 
0 𝑒 

1 
2.71 

⇒ 2 ∫ log 𝑥 𝑑𝑥 = 0.71 < 1 
0 

Hence ∑ 𝑈𝑛 converges. 

(b) ∑ 
𝟐𝒏𝒏! 

(Try this) 
𝒏𝒏 

 

II. Conditionally convergent series: 

The series ∑ 𝑼𝒏 containing positive and negative terms, is said to be conditionally 

convergent or semi-convergent, if the series ∑ 𝑼𝒏 is convergent and ∑ |𝑼𝒏| is 

convergent. 

Example: 

The series 1 − 

1 + ⋯ is divergent. 
4 

 

Theorem:1 

1 
+ 

1 

2 3 
− 

1 
+ ⋯ 

4 
is conditionally convergent, since 1 + 

1 
+ 

1 
+ 

2 3 

 
Proof: 

An absolutely convergent series is convergent. 
 

Let ∑ 𝑈𝑛 be the given series. Then by hypothesis, ∑ |𝑈𝑛| is convergent. 

𝑁𝑜𝑤, 𝑈𝑛 + |𝑈𝑛 | = {
2𝑈𝑛, if Un is positive 

0, if Un is negative 
∴ Every term of the series ∑(𝑈𝑛 + |𝑈𝑛|) is positive and is less than or equal to the 

corresponding terms of the convergent series 2 ∑|𝑈𝑛|. 
Hence ∑(𝑈𝑛 + |𝑈𝑛|) is convergent. 

Since ∑ |𝑈𝑛| is convergent, the series formed by the difference of the corresponding 

terms of both the series is convergent and hence ∑ 𝑈𝑛 is convergent. 

0 
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Note: 

(1) When we say that 𝑈𝑛 is absolutely convergent, we assert the convergence of another 

series ∑ |𝑈𝑛| and not that of ∑ 𝑈𝑛 alone. 
1 

(2) If after a stage |
𝑈𝑛+1| < 𝑘 or |

𝑈𝑛+1|𝑛 < 𝑘, where k is fixed positive number less than 
𝑈𝑛 𝑈𝑛 

infinity, then ∑ |𝑈𝑛| is convergent. Therefore, if one of the above conditions is 

satisfied, then ∑ 𝑈𝑛 is absolutely convergent. 

(3) If two series are absolutely convergent, then they can be multiplied and the resulting 

series is also an absolutely convergent series. 

 

Theorem:2 

If the term often absolutely convergent series are rearranged, then the series 

remains convergent and its sum is unaltered. 

 

Theorem:3 

In a conditionally convergent series, a rearrangement of the term alter its sum. 

 

Series whose terms are alternately positive and negative. 
 

Theorem:4 

If 𝑼𝟏 − 𝑼𝟐 + 𝑼𝟑 − 𝑼𝟒 + ⋯ is a series of terms alternatively positive and negative 

and if 𝑼𝒏 > 𝑼𝒏+𝟏 for all values of n, and if 𝐥𝐢𝐦 𝑼𝒏 = 𝟎, then the series is convergent. 
𝒏→∞ 

Proof: 

Let 𝑆2𝑛 denote the sum to 2𝑛 terms of the series. Then 

(𝑈1 − 𝑈2) + (𝑈3 − 𝑈4) + ⋯ + (𝑈2𝑛−1 − 𝑈2𝑛). 
Since each bracket is positive, 𝑆2𝑛 steadily increases as “n” increases. 

i. e. , 𝑆2 < 𝑆4 < 𝑆6 … 
Without altering the given order of the terms, the sum 𝑆2𝑛 may be written in term 

𝑆2𝑛 = 𝑈1 − (𝑈2 + 𝑈3) − (𝑈4 − 𝑈5) + ⋯ + (𝑈2𝑛−2 − 𝑈2𝑛−1) − 𝑈2𝑛. 
Since each bracket is positive, 𝑆2𝑛 less than 𝑈1, lim 𝑆2𝑛 exist and equal to “𝑙” where 𝑙 < 𝑢1. 

𝑛→∞ 
But 𝑆2𝑛+1 = 𝑆2𝑛 + 𝑈2𝑛+1 and lim 𝑆2𝑛+1 = 𝑙 + 0 implies lim 𝑆2𝑛+1 = 𝑙. 

𝑛→∞ 

Hence the series is convergent. 
𝑛→∞ 

 

Problems: 

1) Prove that the series 

Solution: 

 
𝟏 − 

𝟏
 
𝟐 

 
+ 

𝟏 

𝟑 

 
− 

𝟏 
+ ⋯ 

𝟒 

 
is convergent 

In the given series, 
(i) The terms are alternatively positive and negative. 

(ii)  1 > 
1

 
2 

> 
1 

> 
1 

3 4 
> ⋯i.e., the terms steadily decrease in numerical value. 

(iii) lim 𝑈𝑛 = 0. 
𝑛→∞ 

Hence the three conditions for convergence are all satisfied and hence the 

series converges. 
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p 

𝑥𝑛 

𝟏 − + − 

 

2) Discuss the convergence of the series ∑(−𝟏)𝒏−𝟏 

Solution: 

𝟏 

(
𝒏𝒑) 𝐰𝐡𝐞𝐧 𝟎 < 𝐩 ≤ 𝟏. 

Given: ∑(−1)𝑛−1 ( 
1 

) when 0 < p ≤ 1. 
𝑛 

If 𝑝 = 1, the series becomes, 1 − 
1 

+ 
1 

− 
2 3 

1 + ⋯ 
4 

which is convergent. 

If 𝑝 = 1, the series ∑(−1)𝑛−1 
1 

(
𝑛𝑝) becomes ∑(−1)𝑛−1 𝑈𝑛 where 𝑈𝑛 = 

1 
. 

𝑛𝑝 

1 1 
Now 𝑈𝑛 = 

𝑛𝑝 ⇒ Un+1 = 
(𝑛 + 1)

 

⇒ 
Un+1 

= 
1 x np 

 
Un+1 

𝑈
𝑛 

(𝑛 + 1)𝑝 
np 1 

⇒ 
𝑈𝑛 = 

1
 

n  (1 + 𝑛) 

𝑝 = 
1 𝑝 

(1 + 𝑛) 

Since p > 0 & (1 + 
1   
) 

n > 1, 
Un+1 = 
𝑈𝑛 

1 

1 𝑝 < 1. 

(1 + 𝑛) 

Thus Un+1 < 𝑈𝑛 
1 

lim 𝑈𝑛 =  lim 𝑝 , 𝑝 > 0. 
𝑛→∞ 𝑛→∞ 𝑛 

Hence the series converges. 
 

3) Examine the convergence of the series 𝒙 
𝟏+𝒙 

−   
𝒙𝟐 

𝟏+𝒙𝟐 
+   

𝒙𝟑 

𝟏+𝒙𝟑 
− ⋯ , 𝟎 < 𝒙 < 𝟏. 

Solution: 

The terms of the given series are alternatively positive and negative. 

𝑥𝑛 𝑥𝑛+1 

Now 𝑈𝑛 = 
1 + 𝑥𝑛 ⇒ Un+1 = 

1 + 𝑥𝑛+1 

𝑥𝑛 𝑥𝑛+1 

⇒ Un − 𝑈𝑛+1 = 
1 + 𝑥𝑛 − 

1 + 𝑥𝑛+1 

𝑥(1 + 𝑥𝑛+1) − 𝑥𝑛+1(1 + 𝑥𝑛) 
⇒ Un − 𝑈𝑛+1 =  

 

(1 + 𝑥𝑛)(1 + 𝑥𝑛+1) 
𝑥(1 − 𝑥) 

⇒ Un − 𝑈𝑛+1 = 
(1 + 𝑥𝑛)(1 + 𝑥𝑛+1) 

Since x is positive and less than 1, Un − 𝑈𝑛+1 = a positive quantity and hence 

Un = 𝑈𝑛+1 + a positive quantity ⇒ Un > 𝑈𝑛+1. 
 

 
Now 𝑈𝑛 = 

𝑥𝑛 
 

 

1  + 𝑥𝑛 

 
⇒ 𝑈𝑛 = 

1 
 

 

𝑥𝑛 (1 +
 1 

) 

 
⇒ lim 𝑈𝑛 = 0, 0 < 𝑥 < 1 & 𝑥𝑛 → ∞ as n → ∞ 

𝑛→∞ 

Hence the series converges. 
 

4) Examine the convergence of 𝟏 𝟏 𝟏 + ⋯ 

Solution: 

In the given series, 

𝟓 𝟗 𝟏𝟑 

(i) The terms are alternatively positive and negative. 

𝑝 
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( 

 

1 1 1 
1 > > > > ⋯i.e., the terms steadily decrease in numerical value. 

5 9 13 

(iii) lim 𝑈𝑛 = 0. 
𝑛→∞ 

Hence the three conditions for convergence are all satisfied and hence the 

series converges. 
 

5) Discuss the convergence of (a) ∑(−𝟏)𝒏−𝟏  
   𝒏 

). 
𝒏+𝟏 

Solution: 

The terms of the given series are alternatively positive and negative. 
𝑛 𝑛 + 1 

Now 𝑈𝑛 = 
𝑛 + 1 

⇒ Un+1 = 
𝑛 + 2

 
𝑛 𝑛 + 1 

⇒ Un − 𝑈𝑛+1 = 
𝑛 + 1 

− 
𝑛 + 2

 

(𝑛 + 2) − (𝑛 + 1)2 
⇒ Un − 𝑈𝑛+1 =  

 

(𝑛 + 1)(𝑛 + 2) 
𝑛2 + 2𝑛 − 𝑛2 − 2𝑛 − 1 1 

⇒ Un − 𝑈𝑛+1 = (𝑛 + 1)(𝑛 + 2) 
= − 

(𝑛 + 1)(𝑛 + 2) 
This series is not steadily decreasing and lim 𝑈𝑛 = 1. 

𝑛→∞ 

Hence the series is not convergent. 
 

Note: 

It is important to note that if anyone of the conditions for convergent is removed, 

then the series need not be convergent. 

 

Examples: 

1) 1 
1

 
2 

− 1 
1

 
4 

+ 1 
1

 
8 

− 1 
1

 
16 

+ ⋯. Hence the terms are alternatively positive and negative and 

steadily decreasing in numerical value. 
1 

Let Un = 1 + 𝑛 ⇒   lim 𝑈𝑛 = 1 ≠ 0 ⇒ the series converges. 
 
 2) 𝑆 

 
= 

1 
[ 

 

1 2𝑛 ] & 𝑆 

2 𝑛→∞ 

 
= 1 + 

1 
[ 

 

1 2𝑛+1 ] 
2𝑛 1 − ( ) 

3 2 2𝑛+1 1 + ( ) 
3 2 

1 1 
∴ when 𝑛 → ∞, 𝑆2𝑛 → 

3 
and 𝑆2𝑛+1 → 1. 

3
 

⇒ the series oscillates finitely. 
 

3) 1 − 
1

 
2 

+ 
1 

− 
1 

+ 
1 

− 
1 

2 4 3 8 
+ 

1 
− 

4 
1 + ⋯. Hence the terms are alternatively positive and negative 

16 
and lim 𝑈𝑛 = 0. But the terms do not steadily decrease in numerical value. Thus the series 

𝑛→∞ 

is not convergent. 
 

4) 1 + 
1

 
2 1 1 

+ 
1 

+ 
3 

1 + ⋯ is divergent and since 
4 

2 
+ 

2 
+

 
2 4 

2 + ⋯ is convergent, the series 1 − 
1 

+ 
8 2 

− + ⋯ is divergent. Here the terms steadily decreasing in numerical value and 
3 4 
lim 𝑈𝑛 = 0. But the terms are alternately positive and negative. 
𝑛→∞ 

(ii) 
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( 

 

5) 1 
1.2 

− 
1 

3.4 
+ 

1 

5.6 
− 

1 

7.8 
+ ⋯ is absolutely convergent. 

The terms of the given series are alternatively positive and negative. 
1 1 

Now 𝑈𝑛 = 
2(2𝑛 − 1) 

⇒ Un+1 = 
(2𝑛 + 1)(2𝑛 + 2) 

1 1 
⇒ Un − 𝑈𝑛+1 = 

2(2𝑛 − 1) 
− 

(2𝑛 + 1)(2𝑛 + 2) 
(2𝑛 + 1)(2𝑛 + 2) − 2(2𝑛 − 1) 

⇒ Un − 𝑈𝑛+1 =  
 

2(2𝑛 − 1)(2𝑛 + 1)(2𝑛 + 2) 
8𝑛 + 2 

⇒ Un − 𝑈𝑛+1 = 
2(2𝑛 − 1)(2𝑛 + 1)(2𝑛 + 2) 

⇒ Un − 𝑈𝑛+1 = a positive quantity ⇒ Un > 𝑈𝑛+1 + a positive quantity ⇒ Un > 𝑈𝑛+1 
Here the terms steadily decreasing in numerical value and lim 𝑈𝑛 = 0. 

𝑛→∞ 

Thus the series is absolutely convergent. 

 

Do it: 

1) Test the convergence of the following series: 

a) ∑(−𝟏)𝒏 
𝒏+𝟏 

( ) 
𝒏 

b) ∑(−𝟏)𝒏  
  𝟏   

) 
𝒏+𝟖 

c) 𝟏 − 
𝟏 

√𝟐+
𝟏 

√𝟑 − 
𝟏 

√𝟒 + ⋯ 
𝟐 𝟑 𝟒 

d) ∑(−𝟏)𝒏−𝟏 ( 
𝟏

 
𝒙+𝒏 

e) ∑(−𝟏)𝒏−𝟏 (  
𝟏

 

) 

) , 𝒏 > 𝟏 
√𝒏−𝟏 

f) ∑(−𝟏)𝒏 (   
𝒙𝒏

 

𝒏(𝒏−𝟏) 
) , 𝒏 > 𝟏 

2) Show that 𝟏 
𝟏.𝟐 

− 
𝟏 

𝟑.𝟒 
+ 

𝟏 

𝟓.𝟔 
− 

𝟏 

𝟕.𝟖 
+ ⋯ is absolutely convergent. 

3) Test the absolute convergence of the series 𝟏 − 
𝟐𝟐 

+ 
𝟑𝟐 

− ⋯ 
𝟐! 𝟑! 𝟒! 

4) Show that ∑(−𝟏)𝒏−𝟏 (√𝒏𝟐 + 𝟏 − 𝒏) is conditionally convergent. 
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Binomial Theorem for a Rational Index 

I. Introduction: 

 If n is a rational number and         i.e., | |     the sum of the series  

  
  

  
 
 (   )

  
     

 (   ) (     )

  
     

is the real positive value of (   )    This series is also represented by  ( )  This series is 

absolutely convergent if | |     
 Similarly,  

 ( )    
  

  
 
 (   )

  
    

 (   ) (     )

  
     

and 

 

  (   )    
(   ) 

  
 
(   )(     )

  
    

(   )(     ) (       )

  
     

 

 are absolutely convergent if | |     
  ( )  ( )   (   )  for all values of        provided that   is numerically less 

than unity.  

          Hence  ( )    ( ) can be multiplied and the resulting series is also an absolutely 

convergent series.  

Moreover,    ( )  ( )  ( )            (               )  
 

Note: 

1. The sum to infinity of the binomial series for any given value of x for which is 

convergent has only one value. Hence (   )  is taken to denote the positive value 

of (   )   For example,(  
 

 
)
 
 

 
  

 

 
√  .But only  

 

 
√    is taken as the value. 

2. When      the binomial series is convergent if       When       the 

binomial series is convergent if    . Hence the binomial expansion is valid for  

     when      and for       when      
 

II. Some important particular cases of binomial expansion: 

1. (   )               

2. (   )                  (   )     

3. (   )   
 

 
*                      (   )(   )    + 

4. (   )   
 

 
*                          (   )(   )(   )     + 

5. (   )     
  

  
 
 (   )

  
     

 (   ) (     )

  
     

6. (   ) 
 

    
 

 
  

   

   
   

     

     
     

7. (   ) 
 

    
 

 
  

   

   
   

     

     
     

 

Problems: 

1. Find the general term in the expansion of (   )
 

 . 

Solution: 

 The binomial expansion is given by  

(   )    
  

  
 
 (   )

  
     

 (   ) (     )
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The general term is (   )   term = 
 (   ) (     )

  
  . 

 

Given:   
 

 
 

     

(
 
 (
 
   ) (

 
   ) (

 
     ))

  
   

 

(
 
 ( 

 
 ) ( 

 
 ) (

    
 ))

  
   

 
(  (  ) (  ) (    ))

    
   

 

 
(  )         (    )

    
   

 

2. Expand (a) (    )
 

         | |  
 

 
  

(b) (       )
 

                          (      )  

Solution: 

(a) The function can be expanded in ascending powers of   if |  |       | |  
 

 
 

(    )
 
       (  )     (  )

       (  )
      (        

 

 
) 

(    )
 
    

(
 
 )
(  )

  
 
(
 
 ) (

 
   )

  
(  )    

 
 (
 
   ) (

 
     )

  
(  )    

          
 

  
(
 

 
 )  

   

  
(
 

 
 )
 

   
      (    )

  
(
 

 
 )
 

 

   

The general term is (r+1)
th 

term  

 
      (  ) (  ) (  ) (     )

  
(
 

 
 )
 

 

 

 (  )    
      ( ) ( ) ( ) (    )

  
(
 

 
 )
 

      

 

3. Find the first term with a negative co-efficient in the expansion of (    )
  

   
Solution: 

 The general form is (   )   term  
((
  

 
)(
  

 
  )(

  

 
  ) (

  

 
    ))

  
(  )  

 The    negative term will occur for the least value of r such that 

(
  

 
    )    

  

 
         

  

 
   

  

 
    

 

 
  

                                          

((
  
 ) (

  
   ) (

  
   ) (

  
   ) (

  
   ) (

  
   ))

  
(  )  
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((
  
 ) (

  
 ) (

 
 ) (

 
 ) (

 
 ) (

  
 ))

  
(  )  

              

  
(
 

 
)
 

   

 

4. Find the greatest term in the expansion of  

(a) (   )
  

          
 

 
   (b) (   )

  
 ⁄        

 

 
 (TRY IT) 

Solution: 

 Given (   )
  

      
 

 
   

  

 
 

     (
(
  
 ) (

  
   ) (

  
   ) (

  
     )

  
)      

  

   (
(
  
 ) (

  
   ) (

  
   ) (

  
     )

(   ) 
)      

 
    
  

 

(
(
  
 ) (

  
   ) (

  
   ) (

  
     )

  )  (   ) 

(
(
  
 ) (

  
   ) (

  
   ) (

  
     )

(   ) 
)        

 

 
    
  

 
(
  
   )

 
(
 

 
)  

     

  
   

    
  

           

Now, 
     

  
                       

The value of the greatest term (   )   

(
  
 ) (

  
   )

  
   

     

  
(
 

 
)
 

  

 

III. Approximate values: 

1. Find, correct to six values of decimals, the value of 
 

(    )
 
 

  

Solution: 

 Given 

 

(    )
 
 

 
 

(       )
 
 

 
 

(     )
 
 

 
 

  (  
 
   

)

 
 

 
 

  
(  

 

   
)
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(    )
 
 

 
 

  

(

 
 
  ( 

 

 
) ( 

 

   
)  

(( 
 
 ) ( 

 
   ))

  
( 

 

   
)
 

  

)

 
 

 

  

 
 

(    )
 
 

 
 

  

(

 
 
  (

 

      
)  

((
 
 ) (

 
 ))

  
(
 

   
)   

)

 
 

 

 
 

(    )
 
 

 
 

  
 (

 

      
)  (

 

      
) 

 
 

(    )
 
 

                                                

 

2. Calculate, correct to six places of decimals (    )
 

  (    )
 

   
Solution: 

 Given: (    )
 

  (    )
 

  

Consider (    )
 

  (      )
 

  (   )
 

      (    )
 

  (      )
 

  (   )
 

  

Now,  

(   )
 
    

 

 
  

((
 
 
) (
 
 
  ))

  
   

((
 
 
) (
 
 
  ) (

 
 
  ))

  
     

   ( ) 
 and  

(   )
 
    

 

 
  

((
 
 ) (

 
   ))

  
   

((
 
 ) (

 
   ) (

 
   ))

  
     

   ( ) 

 (   )
 
  (   )

 
 

   
 

 
  

((
 
 ) (

 
   ))

  
   

((
 
 ) (

 
   ) (

 
   ))

  
    

 

(

 
 
  

 

 
  

((
 
 ) (

 
   ))

  
   

((
 
 ) (

 
   ) (

 
   ))

  
    

)

 
 

 

 ( )  ( )    
  

     
 

     

      
     

 

 
   

   

    
                       

   
 

 
   

  

   
     

 

 
   

 

   
     

 

 

When          
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( )  ( )

      
(    ) 

 
 

 

   
(    ) 

                                               
 

 ( )  ( )                            

3. When   is small, prove that 
(    )

 
 
  (    )

 
 
  

(    )
 
 
  (    )

 
 
 

   
 

 
       (     ) 

Solution: 

(    ) 
 
  (    ) 

 
  

(    ) 
 
  (    ) 

 
 

 
  

 
 
(  )  ( 

 
 ) ( 

 
   )

(   )      
 
 
(  )  

(( 
 
 ) ( 

 
   ))

  
(   )   

  
 
 
(  )  

( 
 
 ) ( 

 
   )

(   ) 

       
 
 
(  )  

(( 
 
 ) ( 

 
   ))

  
(   )   

 

 
(    ) 

 
  (    ) 

 
  

(    ) 
 
  (    ) 

 
 

 
                

  
  

   

              
 
  

   
 

 

( (  
 
   

  
  

 ))

 (    
 
  

 )
 (  

 

 
  

  

 
  ) (   (  

 

 
 ))

  

   
 

 
  

  

 
     

 

 
   

 

 
        

 

 
      

 

4. Show that √      √     
 

  
 nearly for sufficiently large values of     (TRY IT) 

 

IV. Exponential and Logarithmic Series 

The exponential theorem: 

  For all values of    (  
 

  
 

 

  
  

 

  
)
 

   
 

  
 
  

  
   

  

  
   

      
 

  
 
  

  
   

  

  
   

Note: 

       
 

  
      

  

  
(     )

    
  

  
(     )

    

              
 
            

1. Show that the co-efficient of    in the infinite series   
    

  
 
(    ) 

  
 

   
    

  
  

Solution: 

  
    

  
 
(    ) 

  
  

(    ) 

  
                (  

  

  
 (

  

  
)
 

 

 (
  

 
)
 

  ) 
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The coefficient of    is 
    

  
 

2. Prove that the co-efficient of    in the expansion of   
    

  
 
(    ) 

  
    

   

  
 (TRY IT) 

 

3. Find the coefficient of    in the expansion of 
(        )

  
  (TRY IT) 

 

4. Find the sum of the series   
   

  
 
      

  
 
         

  
    

Solution: 

                   Given    
   

  
 
      

  
 
         

  
    

                        Let    
             

  
 

 

    
    

   
 
 

  
 
 

  

    

 
 
 

  
(
  

  
 
 

 
)  

Then  

   
 

  
(
 

 
 
 

 
)     

 

  
(
  

 
 
 

 
)     

 

  
(
  

 
 
 

 
) 

and  

  
 

 
{
 

  
 
  

  
 
  

  
   

  

  
  }  

 

 
{
 

  
 
 

  
 
 

  
   

 

  
  } 

   
 

 
*    +  

 

 
*   +  

*        +

 
 
*    +

 
 
 *    +

 
 

 

5. Find the sum of the series (a) ∑
(   ) 

  
   

           (b) 
  

  
 
     

  
 
        

  
  (      ) 

Solution: 

 Consider ∑
(   ) 

  
    

    

    (   )         (   )    (   )(   ) 
                                      

                Let the sum of the series be (S) 

∑
(   ) 

  
  

 

   

   ∑(
       (   )   (   )(   )

  
)    

 

   

 

   ∑
 

  
  

 

   

 ∑
 

  
  

 

   

  ∑
 (   )

  
  

 

   

 ∑
 (   )(   )

  
  

 

   

  

   ∑
 

  
  

 

   

 ∑
 

(   ) 
  

 

   

  ∑
 

(   ) 
  

 

   

 ∑
 

(   ) 
  

 

   

  

  Now, 

∑
 

  
  

 

   

   
 

  
 
  

  
        

∑
 

(   ) 
  

 

   

   
  

  
 
  

  
    (  

 

  
 
  

  
    )      
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          ∑
 

(   ) 
  

 

   

      ∑
 

(   ) 
  

 

   

       

                        (           )  
  

V. Modification of the logarithmic series  

  If             | |    

           (   )    
  

 
 
  

 
       ( ) 

           (   )    
  

 
 
  

 
       ( ) 

Adding (1) and (2), we have, 

   (   )     (   )   (  
  

 
 
  

 
  ) 

 
   (   )

   (   )
  (  

  

 
 
  

 
  ) 

Note: 

       
 

 
 
 

 
 
 

 
   

 

Solved Problems: 

1. If      then prove that      
   

   
 
 

 

(    )

(   ) 
 
 

 

    

(   ) 
   

Solution: 

   

   
 
 

 

(    )

(   ) 
 
 

 

    

(   ) 
  

 (
 

   
 
 

 

  

(   ) 
 
 

 

  

(   ) 
  )

 (
 

   
 
 

 

 

(   ) 
 
 

 

 

(   ) 
  ) 

 
   

   
 
 

 

(    )

(   ) 
 
 

 

    

(   ) 
       (  

 

   
)     (  

 

   
) 

 
   

   
 
 

 

(    )

(   ) 
 
 

 

    

(   ) 
       (

     

   
)     (

     

   
) 

 

 
   

   
 
 

 

(    )

(   ) 
 
 

 

    

(   ) 
       (

 

   
)     (

 

   
) 

     
   

   
 
 

 

(    )

(   ) 
 
 

 

    

(   ) 
      (

(
 

   )

(
 

   )
)        

 

And this is valid if  

|
 

   
|      |

 

   
|    |

 

   
|     |

 

   
|    |   |         

 

2. Show that    √     (
 

 
 
 

 
)  
 

 
 (

 

 
 
 

 
)
 

  
 (

 

 
 
 

 
)
 

  
    

Solution: 
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  (
 

 
 
 

 
)  
 

 
 (
 

 
 
 

 
)
 

  
 (
 

 
 
 

 
)
 

  
  

 (
 

 
 
 

 
 
 

 
 
 

  
 
 

 
 
 

  
  )  (  

 

 
 
 

 
 
 

 
 
 

  
 
 

 
 
 

  
  ) 

 (
 

 
 
 

  
 
 

 
 
 

  
 
 

 
 
 

  
  )  (  

 

 
 
 

  
 
 

 
 
 

  
 
 

 
 
 

  
   

      
 

 
   

      (
  

 
 
  

 
 
  

 
  ) (   

  

 
 
  

 
 
  

 
  ) 

 (
  

 
 
(  ) 

 
 
(  ) 

 
  )  (   

  

 
 
(  ) 

 
 
(  ) 

 
  ) 

  
 

 
   (    )  

 

 
 
 

 
    

   

   
 

Now,        
 

 
 

  
 

 
   (  

 

 
)       (

(  
 
 )

(  
 
 )
)   

 

 
   (

 

 
)        

 

 
   (

 

 
)  

 

 
    

 
 

 
         √   

 

3. Find the sum of the series ∑
 

(    )(  )(    )
  

    

Solution: 

       
 

(    )(  )(    )
 

       
 

(    )(  )(    )
 

 

    
 
 

  
 

 

    
        ( ) 

    (  )(    )   (    )(    )   (    )(  ) 

                                     
 

 
        

 

 
  

( )     
 

 
 

 

    
 
 

  
 
 

 
 

 

    
 

       
 

 
 
 

 
 
 

 
 
 

 
 
 

 
    

 

 
 
 

 
 
 

 
 
 

 
 
 

 
    

 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

 

                   
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
     

  
 

 
       

 

4. Show that 
 

     
 

 

     
 

 

     
             (TRY IT) 

 

5. If       denote three consecutive integers, then show that 

      
 

 
      

 

 
      

 

     
 
 

 

 

(     ) 
  

Solution: 
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   (    )  

If       denote the three consequtive integers, then                
                                     

 
 

 
   (    )  

 

 
            

 

Hence proved. 
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I. Summation by difference series 

                                     
From this series, a series of differences,                       

                may be constructed. Hence we can write, 

          

          

          

  

  

              
            

and call the series                     This is the series of first differences. 

Similarly, writing                     we call the series  

      
       

       
   . This is the series of second differences. 

In a similar way, we can form the series of                   differences. 

 

II. Successive differences series 

Let    be a polynomial of degree              
Let the polynomial be     

       
              and 

                          

     [  (   )
      (   )

        (   )    ]  [   
 

      
             

       [(   )
    ]      [(   )

        ]       

       [    
        

     ]      [(   )   
     ]     

Thus,                                           
                                           

                                … 

                                                      
  (   )                                           

 

For example, consider the series whose general term is        
           Hence the series                                

                       

                         

                  

                  

Problems: 

1) Determine the general term and sum up to “n” terms of the series         
            

Solution: 

∑                       

∑                        

∑                  

∑                 

    is a polynomial of degree “2” in “n”.  

 Let    be      (   )    (   )(   )  
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Put                

                           

                       

Thus        (   )   (   )(   ) 

    ∑    ∑(   )   ∑(   )(   ) 

         
 (   )

 
  

 (   )(   )

 
 

         (   )   (   )(   ) 
         

               

       
 (   ) 

     (   )
   

 

2) Find the     term and sum up to “n” terms of the series                        

Solution: 

   

∑                          

∑                        

∑                     

∑                 

∑                 

    is a polynomial of degree “3” in “0”.  

 Let    be      (   )    (   )(   )  
Put                 

                           

                            
 

 
 

Thus       (   )  (   )(   )  
 

 
(   )(   )(   ) 

   ∑     ∑(   )  ∑(   )(   )  
 

 
∑(   )(   )(   ) 

        
 (   )

 
 
 (   )(   )

 
 
 

 

(   )(   )(   )

 
 

        
 (   )

 
 
 (   )(   )

 
 
 

  
(   )(   )(   )  

 

3) Determine the     term and sum up to      terms of the series                

Solution: 

∑                  

∑                  

∑                               

∑                     
                                  

             
         (   ) 
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Put                           ( ) 
                               ( ) 
            

                     ( ) 
           ( ) ( )   ( )          

       
              

      

   ∑   ∑  ∑  

       
          

 (   )

 
    

     
      

 (   )

 
     

Do it: 

1) Find the     term and sum up to “n” terms of the following series:  

(a)                     

(b)                    

(c)                    

(d)                   

(e)                       

(f)                        

 

III. Recurrence series 

Problems: 

1) Find the     term of the recurring series                 

Solution: 

  The given series has four terms. So let the scale of relation be           

                           
    

        
 

 
    

        
                 

      (        )(               ) 
                                  

                                                

        (    )  (       )   (        )     

                                   ( ) 
                                                               

 
    

(    )(  )
  

 

    
 

 

   
 

 
    

(    )(  )
 (    )    (   )   

 
    

(    )(  )
      (  )    (  )     (             ) 

The general term of     coefficient of    in the expansion =      
 

2) Find the     term of the recurring series 

(a)                   [                                                    ] 
(b)             

(c)                  

(d)                 

(e)                


