UNIT I- SEQUENCES

Sequences
Set:
A set is a collection of well-defined objects.
Example: A = {odd natural numbers greater than 0 and less than 14}
={1,3,5,7,9,11,13}
Finite set:
A set is said to be finite if the number of elements in it is finite.
Example: A = {set of vowels}
={a, e, i,0,u}. The number of elements it the set is 5.
Infinite set:

A set is said to be an infinite set if the number of elements in it is infinite.
Example: A = {number of stars in the night time}
Sequence:

A sequence is a set of numbers which has a 1-1 correspondence with the set of
positive integers.

(OR)

Let f:N - R be a function and f(n) = a,. Then a,,a,,a; ...,a,, ... is called the
sequence in R determined by the function f and is denoted by (a,) or {a,}. a,is called the
nt" term of the sequence. The range of the function f which is the subset of R is called the
range of the sequence.

Note:
The term of the sequence need not be distinct and the range of the sequence may be
finite or infinite.
Examples:
1) The function f: N — R given by f(n) = n determines the sequence 1,2,3 ..., n, ...
2) The function f:N — R given by f(n) = n? determines the sequence 1,4,9 ...,n?, ...
3) The function f:N - R given by f(n)=(—1)" determines the sequence
—1,1,—1,1, ... and the range of the sequence is {—1,1}.
4) The function f:N - R given by f(n) = (—1)"*! determines the sequence
1,—1,1,—1, ... and the range of the sequence is {—1,1}.
Note:
However(—1)™ and (—1)™*! are different sequences.
5) The function f: N — R given by f(n) = 1 determines the sequence 1,1,1,....1. The
range is {1}. This type of sequence is called as a constant sequence.
6) The function f:N - R given by f(n)=2n+3 determines the sequence

579,.2n+3,..
7) The function f: N — R given by f(n) = %determines the sequence 1;; % .....
8) The function f:N - R given by f(n)= % determines the sequence
0123 4
"7’9711713° """

9) Thefunction f:N - R given by f(n)=—-n determines the sequence
-1,-2,-3,...,—n, ...

10) The function f:N->R given by f(n)=x""1 determines the
sequencel, x, x2,x3, ..., x", ...
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UNIT I- SEQUENCES

Fibonacci Sequence
A sequence can also be described by specifying the first few terms and stating a rule
for determining a,, in terms of the previous terms of the sequence.

Example: a; = 1,a, = 1, a,, = a,_,+a,_, and therefore the sequence is
1,1,2,3,5,8,13, ... The sequence is called the Fibonacci sequence.

Limit of the sequence:
Definition:
A sequence (a,,) is said to tend limit [, when given any positive numbers e, however
small we can always find an integer N such that |a,, — | < e foralln > N.
Note:
1) Herel is the limit of the sequence and it is expressed as lim,,_,., a, = L or (a,) — L.
2) |a,, — 1] means the numerical value of a,, — L.
3) If |a, — | <€, itcanbe easilyseenthatl — e < a, <l +e€.
Example:

1) The limit of () is 0.

2) The limit of (=—)is (3).
3) The limit of (2+( ))ISZ

4) The limit of( )IS 1.

Convergence sequence:

A sequence which tends to a finite limit is said to converge and is called a convergent
sequence.
Example:

The sequence (%) (":1) and ( —

Divergent Sequence:
A sequence (a,,) is said to diverge to infinity, if given any real number k > 0 there
exists am € N such that a,, > k, vV n > m. We can write this as (a,) = co.
(OR)
In the first place, the terms a4, a,, as ..., a,, ... mmay have the property that if any
positive number m, however large it may be, there is a positive integer N so that a,, > m
whenn > N.

) are all convergent sequences.

lim a,, = o
n—>oo

Example:
The sequence (n), (2n), (n?) and (n3)are all divergent sequences.
In the second place, the terms may have the property that if any negative
number —m is chosen, however large m may be, there is a positive integer N so that a,, <
—mwhenn > N.

lim a,, = —
n—-oo

Oscillating sequence:

When the sequence does not converge and does not diverge to +oo, it is said to
oscillate.
Example: (-1, (-1)"*!

Note:
If x, a, [ be the three numbers such that |[x —a| < [,thena—x <l <a+ L
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UNIT I- SEQUENCES

Theorem 1:

A sequence (a,) cannot converge to two distinct limits.
Proof:

Let the sequence (a,)converges to two distinct limits [ &I;.

e is a finite quantity.

la, —l| <eforalln>Nand |a, — ;| <eforalln > N.
Now |a, —Il|<eforalln>N=1l—-e<a, <l+eforalln>N.

Therefore N is a finite quantity depending on €. Hence there are only a finite number
of terms of the sequence outside the interval (I — €, + €).

Let € is less than 1/2 |l — ;]. Then the interval (l; —¢€,1; + €) lies outside the
interval
(I—¢€,l+¢€). Hence a finite number of terms lies in the interval (I, —€,l; +¢€). This
contradicts that the sequence has also the limit ;.

Thus the sequence (a,,) cannot converge to two distinct limits.

Theorem 2:

If (a,) and (b,,) are convergent sequences, then (a,, + b,,) is also a convergent
sequence.
Proof:

Let (a,) and (b,) be two convergent sequences.

Since (a,)is a convergent sequence, let it converge to a, a finite quantity.

lim a, =a
n—-oo

Since (b,,)is a convergent sequence, let it converge to b, a finite quantity.
lim b, = b

n—-oo

Let € be an arbitrary positive integer, then there exist numbers N, & N;
depending on e such that
la, —a| < eforalln > Ny and |b,, — b| < € forall n > Nj.
Let N be greater than Ny & N;. Then
|(ay + ba) — (a+ b)| = |ay, — a + b, — b|
<l|a, —a| + |b, — b|
<et+e=2eforalln=>N

Since € is an arbitrary,lim,,_,.(a, + b,) =a+ b
Similarly, lim,,_, . (a,, — b,,) = a — b and hence lim,,_,,(a,, + b,) = a + b.

Corollary:
1) If (a,) is a convergent sequence and (b,,) is a divergent sequence, then(a,, + b,)is a
divergent sequence.
2) If (a,) and (b,,) are both divergent sequence, then(a,, + b,)may be divergent or
convergent or oscillate.
3) If (a,) diverges to o« and (b,,) diverges to —oo, then(a,, + b,,)may behave in any
way.i.e., it may converge to a limit, may oscillate or diverge.

Theorem 3: If (a,) » a and (b,) - b, then (a,b,,) - ab.
Proof:

Given (a,,) —» a and (b,,) = b.
Leta,=a+A,andb, =b+p, .
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UNIT I- SEQUENCES

Since (a,,) - a and (b,)) = b, A, and u,, tend to 0.
|1,] < €,n=Nyand |u,| <€ n=Nj.
Let N be greater than Nyand N;.
Now a,b, = (a+ 1,)(b+ u,) = ab + au, + bA, + A untin
a,b, —ab = ay, + bA, + 1, u,
lanbn, — ab = apy + by + Appiyl
|anbn - abl =< |a.un + bln + An.“nl
|anbn - abl = Ia.unl + |bln| + Mn,unl """" (1)
|anbn —ab| < |auy| + |bAy| + Mn/'lnl
lap,| < lale, |bA,| < |ble, [Apunl < €*,n =N

(1) = |a,b, — ab| < |ale +|ble + €% = €(|a| + |b| + €)
Since both |a| and |b| are finite numbers, |a,b,, — ab| < Ae, where A is a positive constant.
Since € is an arbitrary,Ae is also arbitrary and hence
|a,b, —ab| < €,n = N.
Thus(a,b,,) — ab.

Theorem 4: If (a,) » a and (b,) — b,b # 0, then (Z—") - %,

Proof:
Given (a,) » aand (b,) » b,b # 0.
Leta, =a+A,and b, = b + u,.
Now,

Q

a+d, a bla+,)—alb+u,) ab+bl,—ab—ay,

a
b b+u, b b(b + py) a b(b + 1)
a, a biA,—au,

“by bbb+ )
For the corresponding arbitrary positive constants €, there exists numbers Ny, &N, such that
[1,] < €,Vn=N,and |u,| <€Vn=N;.

Let N be greater than Nyand Nj.

Now, |b(b + un)| = [bl|b + unl

Since |b > 0land |u,,| < €, we assume that |b + p,| > % |b|

n

by

Thus
1
b+ pn| > 5 1b]* = U(say).
Then
a, a| _|bAy|+lap,l |ble+lale (bl +lal) ja, a
In 2o 2 >N
b, b|— bt 1 ¢ 1 T, p <cwvn=h

where [, is a fixed positive constant.
Hence (a—") -2
b b

n

Theorem 5: Cauchy’s 15¢ theorem on limits
If a;,a,,a;...,a,, ... denote a sequence of numbers such that lim,,_, ., a,exists and is

+aj+ .t . .
equal to 1, then 27 8+7%n 550 exists and is equal to L.

Proof:
LetS, = a, + a, + as, ...+ a,. Since (a,) — [, we can find N corresponding to the
arbitrary constant €, such that
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UNIT I- SEQUENCES

l—e<a,<l+eforalln>N.
Now,l—e<ayy1 <l+e€
[—e<ay, <l+e
l—e<ay, <l+e

l—e<a,<l+e€
Adding we get,
mM=N)(1—¢€)<ayys +aysz +ayszqe ot a, <(m—N)(+¢€)
Adding S, to this inequality, we have
Syt+(m—-N)(l-¢e)<S, <S,+(n—N)(l+¢)
Divide by n, we get,
S_n_l_(n—N)(l—e) <S_n<5_n+(n—N)(l+6)
n n n n n

S S Sv N
L (- —e<Z—l<E _—(+e)+e
n n n n n

Since N is a fixed number, Sy, N(l —€),N(L + €) are fixed, we can find a
number A such that Sy, N(I — €), N(l + €) are all less than A.
—2A Sn 2A
——e<—=-Il<—+e€
. . n no. n .
Since A is fixed, we can find positive integer N; > Ndepending on e such that
VTLZNl,%<E & —%>—E.
Hence the inequality becomes,

Sn
—2e<——1<2¢
n

Sn

Since € is an arbitrary,2e¢ is also arbitrary and hence

S
lim = =1
n—oo N

Dedikind’s theorem:
If the system of real numbers is divided into two classes A and B in such a way that

(i) Each classes contains atleast one number.

(i) Every number belongs to one class or the other.

(iii) Every number in the lower class A is less than every number in class B, then there is
number a such that every number less than a belongs to the lower class A and every
number greater than abelongs to the upper class B. « itself will belong to one and
only to one of the classes.

Bounded sequences:

Let aq,a,, as ..., a,, ... denote a sequence of numbers. Then the sequence is said to be
bounded above if there exists a finite number A with the property that a,, < A for all values
of n. Similarly, if there exists a finite number A with the property that a,, = B for all values
of n, then the sequence is said to be bounded below. The sequence is said to be bounded if it
is either bounded above or bounded below.
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UNIT I- SEQUENCES

The upper and lower limits of a sequence:

Let us consider the sequence {a,}. If A is a number such that a,, < A,n > N, then A
is called an inferior number for the sequence {a,,}.

Obviously, in this way every number less than A is an inferior number and there may
exists number greater than A possessing the same property. The inferior numbers are
unlimited and form an aggregate. If the upper bound of this aggregate of inferior numbers be
A,then A is called the lower limit of {a, } and we write this aslim = A.

Similarly, B is number such that B > a,,n > N, then A is called a superior number
for the sequence {a,, }.

Obviously, in this way every number greater than B is a superior number and there
may exists number less than B possessing the same property. The superior numbers are
unlimited and form an aggregate. If the lower bound of this aggregate of superior number be

u, then p is called the lower limit of {a,,} and we write this as lim = p.
It is easy to see that “If there exist no inferior numbers, then 1 = —co and if there
exist no superior numbers, then y = oo”.
Example:
1

(i) Consider the sequence 1%§ sy Here 1 is the least upper bound and O is the

greatest lower bound. So it is a bounded sequence.

(it) Consider the sequence 1,2,3, ...n, ... is bounded below but not bounded above. Here 1
is the greatest lower bound(G.L.B).

(iii) The sequence —1, -2, -3, ... — n, ... is bounded above but not bounded below. Here -1
is the least upper bound(L.U.B).

(iv) The sequence 1,—1,1,—1, .... is a bounded sequence, since —1 is the G.L.B and 1 is
the L.U.B.

Theorem 6:
The necessary and sufficient condition for the convergence of {a,} is that u = 4. i.e.,
lim a, =lima,.
Proof:

(i) The condition is necessary

Suppose that a,, — 1, then by definition |a,, — I| < e foralln > N.
>l—-e<a,<l+eforalln>N

[ + € is a superior number and [ + € is an inferior number. The difference between
these two is 2e and can be made indefinitely small. Further no superior number can be less
than an inferior number. Hence the lower bound of the superior numbers and the upper bound
of the inferior numbers must coincide with L.

ie., lim a, = lim a,.

This prove that the condition is necessary.

(if) The condition is sufficient.
Suppose now that we are givenlim a,, = lim a,, = L. Then since lim a,, is the
lower bound of all the superior numbers.
lima, +¢€
I.e., L + € is the superior number.
ta, <l+eVn=N;
Similarly, lim a,, is the upper bound of all the inferior numbers.
lima, +€
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i.e., Il — e is an inferior number.
sl—-e<a,,Vn=N,
If N is greater than N; and N,, thenwe have,l —e < a, <l+eforalln > N and |a,, —
l| < eforalln > N.Hencea, - 1.
This prove that the condition is sufficient.

Theorem 7:
Cauchy’s general principle of convergence:
A necessary and sufficient condition for existence of a limit to the sequence {a,} is that,
if any positive integer € has been chosen, as small as we please, there shall be a positive
number m such that |a,, — a,,| < € foralln > m.
Proof:
(i) The condition is necessary.
Let the sequence converge to the limit [. Having to choose ¢, take it as 6/2.
We know that there is a positive integer m such that
lan, — 1| <€/, foralln >m,
Buta,—a,=a,—-l+1l—a,
S lay—ap| <la, =l +|l—an| <€/ +€/5 <eifn=m.

(if) The condition is sufficient.
For if the condition is satisfied, then there exists an integer m such that
la, — a,| <eforalln>m.
i.e.,am —€<a, <a,+ceforalln>m.
a,, — € is an inferior number and a,, + € is the superior number.
Henceu — 1< (ap, +¢€) — (a, +€) < 2¢
e, u—A<2e.
But © — 1 = 0 and € can be taken arbitrarily small.
spu—A=0=>pu=A4A
Thuslim a,, = lim a,.
Hence the sequence {a,,}is convergent.
Monotonic sequence:

A sequence in which a,,; = a,for all values of n is called a monotonic increasing
sequence. Similarly, if a,,, < a, for all values of n is called a monotonic decreasing
sequence.

Example:
(i) {a,} defined by a,, = n is monotonically increasing

(ii) {a,} defined by a,, = 1/n is monotonically decreasing.
(iii) {a,,} defined by a,, = (—1)™ is neither monotonically increasing or monotonically

decreasing.
Problems:
(1) Show that {#} is a monotonic increasing sequence.
Solution:
iven- L
Given: {a,} = {n+1} 1
n n+
Leta, = ey Then Any1 = iz’

Now,
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_n+1 n

“Tn+2 n+l
_(m+1D*-n(n+2)

n+1(n+2)
1

Apy1 — A

“rDmtd

Hence a,, ., > a,,for all n.
Hence showed.

(2) Prove that {%} IS @ monotonic increasing sequence.

Solution:
. 2n-7
Given: {a,} = {3;2}.
Leta, = zz;;
_ 2(n+1)-7
Then az,, = 3(n+1)+2
=>a __2n-5
n+l ™ 345
Now,
_2n—5 2n-7
I T
B 2n-5@Bn+2)—-(2n—-7)(3n+5)
B (3n+5)(3n + 2)
3 25 S0
S Bn+50Bn+2)"
Hence proved.
Theorem 8:
A monotonic sequence always tends to a limit finite or infinite.
Proof:

Suppose that the sequence {a,,} is a monotonic increasing sequence.

Now, all the terms of the sequence a,,a,,as ...,a,, ... form an aggregate. If this
aggregate be not bounded above, its is clear that terms continuously increase and tend to plus
infinity. If it is bounded above, let M be the upper bound.

Then we have a, < M for all n and a,, > M — € for at least one value of n, say N so
thatay > M —e.

But as the sequence is steadily increasing, we have
a, > M — € for at least one value of n > N
= |a,, — M| < € for at least one value of n > N
~A{an} - M.

Note:
(i) Thus we have a monotonic increasing if bounded above tends to the upper bound and if
not bounded above tends to +oo.
(i) Similarly, a monotonic decreasing if bounded below tends to its lower bound and if
not bounded below tends to —co.
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Examine whether the following sequence are monotonic:

1 1 (-
(@ (2+3) (b)(1/2n) © (3) @ (5%)
1
@ (2+3)
Given: {a,} = (2 + %)
Leta, =2+ ’ll
Thendy,q =2+ ——
Now
=2+ o 1 o1
n+1 =80 = n+1 n n+1 n nn+1)
% apgq < ap, for all values of n.
Hence given sequence is monotonic decreasing.
(b) (/2n)
Given: {a,} = (1/2n)
Let a, = 1/2n
Thena,y; = 1/2n+1
Now
1-2
An+1 — An = 1/2n+1 - 1/211 = on+l
-1
=>an+1—an=ﬁ<0
= ap4q < a,, for all values of n.
Hence given sequence is monotonic decreasing.
1
©)(z)
. 1
Given: {a,} = (1;)
1 1
Let a, = E.Then Ani1 = m
Now
1 1
N N
_ 1 1 1-(n+1)  -n <0
T T 0T D i alm+ D) m+ Dl
= ap4q < ay, for all values of n.
Hence given sequence is monotonic decreasing.
—-1)n
@ (55)
Given: {a,} = ((_71[)")
-1 _1\n+1
Leta, = %.Then Aniq = ( nlil
Now

(_1)n+1 (_1)71
b1 = = T T Ty
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An+1 — an = (-1 )"[n+1—§]—(_ )n[( +1)]<0

= ap4q < ay, for all values of n.
Hence given sequence is monotonic decreasing.

Problems:
1) LEta":TL+T;+E+ +—Showthatthesequence{an}tendstoallmlt
Solution:
Given a, = ——+ ——+—+ -+ —
n+1 n+21n+31 2n
G =zt Tt
Now
—1+1+1++ ][+1+1++1
it = O = T ¥ 3 Tt a 2n + 2 n+1 n+2 n+3 2n
_ 1 1 1 1 1 1 1 1
"n+2 n+3 n+4 2n 2n+1 2n4+2 n+1 n+2
1 1_ 1 1 1
n+3 2n 2n+1 2n+2 n+1
_ 1 N 1 1
" 2n+1 2(n+1) n+1
_ 1 12 1 1
“2n+1 2(n+1) 2n+1 2(n+1)
1
>0

"2+ D@2n+ D)
~ {a,} is a monotonic increasing sequence.

To show that this sequence tends to a limit, it is necessary o show that {a,, }is bounded
above.

Here

< ! + ! + ! + -+ ! ( 1 ) <1
—=n|—] > .
n n+1 n+1 n+1 n+1 nn+1 n

Hence (a,) is a bounded monotonically increasing sequence and so it tends to a limit.

n
(2)Find the limit of the sequence {a,,} where {a,,} = (1 + (111) )?
Solution:
. 1\"
leer_l. (1 + (;) )
By binomial theorem,
(1+ )" = 1" + nCyx + nCyx? + -+ + nCpx™.

B
Aa-H(--(-52)

This expression contains (n+1) terms. As n increases, the number of terms also
increases. Hence {a,} is a monotonically increasing sequence.

Hence either it tends to limit or infinity. Thus in order to show that the expression
tends to a limit, it is necessary to show that it is bounded.

i.e.,
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(1+1>n<1+1+1+1++1
n 1! 2t 3! n!
<1+1+1+1+ +1

2 22 2n

n
Hence (1 + %) is bounded and tends to a limit. This limit is denoted by e. Hence

limyo (142) =
Clearly

n

1
(1+£) >2=>2<e<3.

(3) Let a,iq = %[an + by, b1 =\ a,b,. Show that the sequences (a,)& (by,)
converge to a common limit.
Solution:
By hypothesis, a,,; and b, ;are respectively the A.M & G. M between (a,,)& (b;,).
Also we know that A.M & > G.M. Hence

apn+1 = bn+1- """" (1)
Moreover the A.M & G. M of two number lie between the numbers.
a, = apyq = by, VN €N, oo (2)
anp =byiq =2b,,VneN - (3)
LQp = Apyq = by =2 by, VN EN (by (2) and (3))

Hence (a,) is a monotonically decreasing sequence and (b,)is a monotonically
increasing sequence.

Further

a, =2b,=>2b;,VvneN&b,<a,<a,YneN

Hence (a,) is a monotonically decreasing sequence and bounded below by b; .

Similarly, (b,,)is a monotonically increasing sequence and bounded above by a;.

Thus (a,) — l(say) and (b,) — m(say).

Now,

1
An+1 = E(an + by).

Taking limit as n — oo, we get,
l—l(l+ )=>1 l_m:>l_m:>l_
—puTm 2= 272 27T
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(4)Let a,, 1 = /a,1a, and a,, > 0. Show that the sequences {a,, — 1}&{a,,} are both
monotonic, one decreasing and other increasing. Also prove that {a,} tends to

(a1a22)1/3.
Solution:
Let a; > ay; az =+a,ay; a4 = \Jasa,.
as lies between a,& a; and a, lies between a;& a,.
From this we see that a,, a,, ag, ... IS @ monotonic increasing sequence and
a,, as, as, ... IS a monotonic decreasing sequence.

Now
1
2 a32 a1 a3 a1 /2
a3 =a1a2=>_2=—=>_= —_— )
a, a, a; a,
a’ a an /2
2 4 A3 (A4 ]
ay —a3a2z—2———( ) ;
a, a,
1/ .1 3
5 as®?  a, as a; /24 aq /4
as“ = a3 =>—=—.—=|— =|— ;
a, a, a, a, a,
3 1 3/ .1 5
" ag® as a, (a;\/s ra;\/+ ra\/st'/s  ra;\" /e
A" = A5y = — =—.— = |— A— =|— =(— .
a, a, a, a, a, a, a,
Continuing this process, we get,

Gntz (ﬂ)un, where u,, is the n" term of the sequence 1/,,1/,, 3/8 , 5/16'

az az
Here
Un = E(un—l + Up_z)
1
Up —Up—1 = (_ E) (Unp-1 — Up—2)
1
Up—1 — Up—2 = (_ E) (Up-2 — Up_3)
1....
Uz — Uy = (_ E) (uz —uq)
1 n-2 1 n-2 1

Up —Up—1 = (‘ E) (U, —uy) = (— E) (1/4 - 1/2) = (D! (2—n)
Hence

n—1 1

Up —Up—q = (_1) (Z_n)
n—-2 1
Up_1 — Up_p = (—1) (Zn_l
1 )
w, =1 = (D' (55)

Thus

(L

Un =W = Tor T o
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1 1 4 1 1
Up=zs—=+—=— =2
2 22 23 3 (-1
1-(-3)
li _1
it =3
1 l 1
a a\s a 1
lim =2 = (—1)3 = lim a,,, = a, (—1)3 = lim a,, = (a1a,%)3.
n-o «, a, n—-oo a, n—oo
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Series

Infinite series:
Let u,.be a function of r which has a definite value for all integral values r. An
expression of the form
Uy +uy; +uzy o tu, o
In which every term is followed by another term called an infinite series. This series is
denoted by Y72 ; u,.and the sum of the first n terms of series namely u; + u, + us, ... + uy,
by S,,.
1) S, may tend to a finite limit(say)
2) S, may tend to infinity
3) S, may tend to minus infinity
4) S, may tend to more than one limit
If S,, tends to a finite limit S, then the series is said to be convergent and S is called its
infinity.
The sum to infinity is not a sum in the ordinary senses, but it is a limit of a sum.

Consider the series

1+1+1-F1+
2 22 28
1
1_2_n_ 1
Sn 1~ _Zn—l
1=3

Now as n — oo, i 0. Hence lim,,_,o, S,, = 2.
Therefore, the series is convergent.

If S,, tends to infinity or mins infinity, then the series is said to be divergent.

Let us consider the series Y.>2; u, where u,. = r.

1
Sn=1+2+3+---+n=§n(n+1):>Sn—>00,whenn—>00.

©o (00}
= Z U, = Z r is divergent.
r=1 r=1

If S,, tends to more than one limit, then the series is said to be oscillate. In this case,
we say that the series oscillates finitely or infinitely according as S,, oscillates between finite
limits or between +oco and —oo.

oo

Consider the series Z(—l)”l.

r=1
Sp,=1—-1+1—-1+ -+ nterms.
~ S, =1,ifnisodd and §,, = 0, if n is even.

Z:(—l)r+1 oscillates finitely.

r=1

Consider the series Z(—l)”lr.

r=1
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S, =1—-2+4+3—-4+--+nterms.

1 1
~ Sy = > ifnisevenand S, = > (n+1),ifnis odd.
or

S, = —,ifniseven and S,, = +oo,if nis odd,as n — oo,
Z(—l)r“r oscillates infinitely.

If the series is divergent or osEiliating, it does not posses “sum to infinity” as defined above.
Consider the geometric series 1 + x + x% + -+ x™71 + -
n
S, = %,ifx +1.
If |x] < l.ie,-1<x<1,x"-0.
Sp — ﬁ, as n — oo,
If|lx| > 1,5, - .
If|x| = 1,5, =1 or0according as n is odd or even.
converges, if|x| <1
diverges if [x| > 1
oscillates finitely if x = —1
infinitely if x < —1

o
=~ the geometric series Z x" =

n=0

Note:

If the sum to n terms, then S,, can be expressed by elementary functions, the nature of
the series can be determined by finding whether the expression for S,, tends to a limit or
diverges or oscillates when n — oo. But there are cases in which we have no method to find
the sum of the first n terms of a series. So we have to find methods for deciding the question
of convergence when it is impossible or inconvenient to find S,, in this way.

Consider the geometric series 1 + x + x2 + -+ + x"71 + -

n
Sp = %, ifx # 1.
If |x] < 1l.ie.,-1<x<1,x"-0.
1

Sp— ,asn — oo,

If|lx| = 1,5, — oo.
If|x| = 1,5, =1 or0according as n is odd or even.
If |x| < —1,S,, = o or — oo according as n is odd or even.

converges, if|x| <1
diverges if |x| =1
oscillates finitely if x = —1
infinitely if 1 + x < 0

oo
-~ the geometric series Z x" =

n=0

Theorem:1

If u; +u; + usz, ... +u, + - is convergent and has the sum “s”, then u,,,{ +
Upio + Upez + -+ i convergent and has the sum (uq + uy + usz, ... + u,,) Where m is
any positive integer.
Proof:

Page 2|14



UNIT II- SERIES

Let u; + u, + uz, ... + u, + -+ be convergent.
Given:
lim (uy +up, +ugy o+ uy,) =5
n—->oo
Let Upiq + Umiz + Umaz + o F Umgn = (Umar + Upgz F Uz + Uy + o+ Uppyn) —
(U +uy +usg oo+ uy)
Taking limit on both sides, we get,
gm(um+1 t Upiz + Upyz + 0+ um+n)

= Tlli_r)rolo(um+1 + Unsz + Ungz T Uy + o+ Upan)
—lim(u; +up, +uzq c+upy) =S — (ug +uy +usgy o+ uy).
n—->oo

Similarly, if uy +u, + ugy ... + u, + -+ diverges, then u,, ;1 + Uiz + Upas + -+ diverges,
where m is given any positive integer.

Note:
The convergence, the divergence and oscillation series is not affected by the addition,
omission or alteration of a finite no. of terms.

Theorem:2
If uy +u; +us, ...+ u, + - is convergent and has the sum “s”, then (ku,; +
ku, + kus, ...+ ku, + ---) and has the sum “ks”.
Proof:
Let u; + u, + uz, ... + u, + -+ be convergent.
Given:
r{ijgo(ul + Uy, + Uz ..t uy) =s

lim (kuy + kuy, + kugy ...+ kuy, + )
n—->00

= lim k(u; + uy +uzy ...+ u,) = klim (ug +uy +usy ..+ uy)
n—o0o

n—-oo

lim (kuy + kuy, + kusy ...+ kuy,) = ks

n—-oo

Hence (ku, + ku, + kus, ...+ ku, + -+ ) converges to ks.

Theorem:3

fu; +uy +uz, ...+ u, +---and vy + v, + v3, ...+ v, + -+ are both
convergent, then the series ). (u,, + v,,) is convergent and its sum is the sum of the two
series.
Proof:

Letu, + u, + uzy ... + up + - and vy + v, + vz, ... + v, + -+ be two convergent
series. Let the sum of the two series be “s” and “y” respectively. Then

lim ) u,=sand lim ) v, =t
n—->oo n—-oo

Tllmolo (up+vy) =W +v)+ W +vy)+ -+ (u, +vy)
Taking limit on both sides, we get,
%il’l;) (un + Un) = %lngo[(ul + vl) + (uz + Vz) +-+ (un + vn)]

= lim (uy + uy + uzy .. +uy) + lim (v + vy, + V34 o+ V)
n—-oo n—-oo

= lim Z(un+vn) =s+t
n—-oo
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z(un +v,) - (s +1t).

Series of positive terms:
Theorem: 4

A series of positive terms cannot oscillate is either convergent or divergent.
Proof:

Let us consider a positive term.

Since all the terms are positive, S,, steadily increases as n increases.

It tends to a finite limit(or) infinity. Hence the series cannot oscillate.

If S,, < k, for all values of n, rlll_{?o S, exists and is equal to “k” or is less than the “k”.

Then the series is convergent.

Theorem:5
Ifuy + uy + uz, ... + u, + -+ is convergent, then limu,, = 0.
n-oo

Proof:
Let u; + u, + uz, ... + u, + --- be a convergent series.
Since the series is convergent,
lim (u; +uy, +uzy o +u,) =s
n—->oo
Now,
limu, = lim (u; + uy + usy ... +u,) — lim(uy +uy +ugy .+ up_) =s—s =0.
n—-oo n—-oo n—-oo
= limu, = 0.

n—-oo

Hence proved.

Comparison test:

If wy+u, +uzy...+u,+- and vy +v, + vz, ...+ v, +- are two series of
positive terms and the second series is convergent and u,, < kv, where k is constant for all
values of “n”, then the first series is also converges and its sum is less than or equal to “k”
times that of all the second.

Conversely, if Y u, is divergent and u,, = kv, then Y. v, is divergent.

Problems:
1 1 1 .
1) Provethat1 + o T3 T3+ isconvergent.
Proof:
Given: gl
iven: Yu, =1+ -+ -+ -+
1 1 1 1 1
Here u, = (n-1)!" Take v, = n 123.n - 1222.2 < 2n-1"
Si L t, Y. u,, is convergent
ince = is convergent, Y u,, is convergent.

2) Prove that the general harmonic series 1,1, 1
a a+b a+2b

and “b” are the positive numbers diverges to infinity.
Solution:
1 1

Given: Y u, = p + b + —12b

1
. Take v, = m.

+ --- is divergent, where “a”

[

Here u,, = pEvosmyYS
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1 S 1
a+nb” n(a+b)
, 2 Uy, is divergent.

Un+1 =

. 1
Slnce is divergent and u, 4 > ——— @D

. 1 2 3 . .
3) Prove that the series ITRETEET R divergent.

Proof:

_n 1
2n-1)(2n+1)
Since% is divergent and ) u, > é , 2 Uy, is divergent.

Given:Zun=%+3%+%+...:

Theorem:6
If ), v, is convergent and ? tends to a limit other than zero as n — o, then Y u,

is convergent.
Proof:

Let lim == be k. (k being positives 0.)

n—oo V.
On and after a certain value of “n” say “m” the values of the series of numbers.

In Inti Tnt2 - lie in the interval k — e to k + € where “€" is a very small

o Un " Vi1 Vngz
finite the quantity.

Aslim =2 = k, |=2

Un Vn

n—-oo

k| < €,V n =m, apositive integer.

k+e<<k4+es><k+esu,<vy(k+e6),Vn=>m

Un Un

Y. u, is convergent.
Hence proved.

Theorem:7
If Y v, is divergent and Lﬂ tends to a limit other than zero as n —» o, then } u,
is divergent. "
Proof:
Let) v, is divergent
Let lim == be k. (k being positives 0.)

n—»oo n

As lim 2 =

n—-oo 17n

- k| <€V n =N, apositive integer.

k—6<v—<k—e=>k+e< "o v (k—€e)<u, >u, >v,(k—¢€),Vn=m.
n

Y v, s dlvergent.

Hence proved.

Problems:
1) Test the convergence of ). \/ﬁ

Proof:
Given: Y u, = Zﬁ.

Take Y, v, =) % which is divergent.
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1
Jn_Y21_ M o M 1 gL
Un 1 Vn2 +1 1 Un 1 Un

Thus ), u,, and ), v,, may be both converge or diverge.
1. .
Also ). ~is divergent.
Hence ) u,, is also divergent.
2 3

1
2) Test the convergence of —— + —— +——+ -
Proof:

- . —_ 1 2 3
Given: Zzuf ~ 123 + 2.3.5 + 3.4.5 +
n—

nn+1)(n+2)
Take v, = n—lz And we know that ; v,is convergent

Now u,, =

1
Uy, 2n—1 ) n(2 — ﬁ)
S — = ne =
v, nn+1n+2) 1 2
g w (1+3) (1+3)
Thus Y u, and Y, v,, may be both converge or diverge.
Also ), n—lz is convergent.
Hence ), u,, is also convergent.

=2#0

3) Test the convergence or divergence of the series X7 (Vnt + 1 —Vn* — 1)

Proof:
Given: Yu, =Y7(Vn*+1—-+vn*-1)
vnt+1+vnt-1
— 4 _ 4 __ — 4 — 4 __ -_—
Letu, =vn*+1—-vnt—1=+vVn*+1—-vn*-1. —

nt+1-mn*-1) 2

u, = =
" (Wt 14Vt —1) Vnf+1+Vnf—1

Let v, =), n—12 & Y v, is convergent.

Uy, 2 , Uy 2n?
U Vmiriavmio1 e 1 1
v _
n n*+1++vn n n2<\/1+m+\/1—?>
2 2
= lim — = lim ==—=1=+#0.

. Un _
n—-oo Un - n—oo 1 1 2
<\/1 + oy + \/1 — F)
Thus Y u, and Y, v,, may be both converge or diverge.

1 .
Also ¥ — is convergent.

Hence ), u,, is also convergent.
. . o 1 ..
4) Discuss the convergence of the series }{ —(a+n)p(b+n)q,a,b,p,qare all positive

numbers.
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Proof:
an- R T 1
Given: Zun = 21 (m)
1

Letu, = (a+n)P(b+n)d

1
Take Y v, =Y —0
np+a np+a

Uy
o @EPGET T (1 9V (11 D)
n

q

=1=0.

. un .
= lim—=1
m m b

S

= Yuyand Y v, may be both converge or diverge. Also ) v, is converges if
p +q > 1anddiverge if p + q < 1. Thus Y u,, is converges if p + g > 1 and diverges if

p+q<1.

5) Find whether series in which u,, = (n® + 1)1/3 — n is convergent (or) divergent.

Solution:
Given: Y u, = Y% ((n3 +1)'s— n)

= (n3 Ys_p= ERRCE I 111
Letu, =(n>+1)7/3 n—n[(1+n3) 1]—nl1+3.1!.n3 e

.._1]:n[#_$+...]

—[m—gn—5+ ]TaI;eZvnl S
Now’u_n=[W_W+"']
Uy 1
nZ
Y R ]
3n? 9n5
1l
[3 9n3 ] "
> fim 3= im [ g =30

Thus ), u, and ). v,, may be both converge or diverge.
. 1. .
Since ), — s convergent, Y. u, is also convergent.

D’Alembert’s Ratio Test

Conditions:
@ If 11[1_&10 u::l k, where k < 1, then Y u,, is convergent.
@) If 11_)121o u":1 k, where k > 1, then Y u,, is divergent.
(i) If zi_)rg % = 1, then the test fails.
Problems:
1) Test for convergence the series Y., —o ’;—Ii
Solution:

Page 7|14



UNIT II- SERIES

+1
Given: Yu, = Y% o;:nﬂ
Letu, = nrl
2n3+1 34+3n%+3n+2
(n+1)°+1 _ n n n
Then ., = antlyr T iy 3 3 o )
Uy nP43n7+3n42 2" +1 _n3(1+ﬁ+ﬁ+ﬁ) 2"(2 +5m)
T ouy, 2l 4+ 1 n3+1 2"(2+2in) n3 (1+i3)
n
3,3, 2
. Up . (1+ + 2+ )(2+2n) 1
=>11mv—=11m 1 §<1'
n—-oo n—-oo
n 2+ z_n) (1 +-3)

Hence Y u,, is also convergent.

X 1
2) Examine the convergence of the serles — + + + -+ D" + -
Solution:
i xM—1
Given: Yu, = + + + +(211 ot
xn— 1
Let U, = m
h -
Then .y = (2n+1)k
CUnan_ X" @n-DF

U, - 2n+ 1k’ xn1

. un
= lim — = x.
n—oo ‘Un
By D’Alembert’s Ratio Test,
(i)  If lim = = k, where k < 1, then Y u,, is convergent.

n—oo Up

(i) If lim u;‘“ = k, where k > 1, then Y u,, is divergent.
n—oo n

(i) If lim % = 1, then the test fails.
n—oo n

In this condition,
1 x x2 n-1
E U Sttt ot g et

xn—l

(2n — 1)k

Now,

U, =

Take X v, =znik

u,  n* 1
Z B (2n — 1k Bl 2k(1 _%)k

= limu—n= lim;l=ik¢0
n-w Yy now 2k(1 _ﬁ)k 2
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Thus ), u, and }; v,, may be both converge or diverge.

Since Y. v, is converge only if k > 1 and diverge if k < 1, ) u, is converge
only if x < 1 and diverge if x > 1 for all values of k.

Also if x = 1, then the series converges only if k > 1 and diverge if k < 1 for

all values of k.
1 1
3) Discuss the convergence of the serles T T 1z T 1 T
Solution:
- 1 1 1
Given Y u, = 1+x + 1+2x2  1+43x3 1
Letu, = = Thenup,y = =
1
. . —+1
L Une1 _ - (1+nx") = —1X
u, 1+ m+Dxn* L+x(1+l)
nxm n

If x = 1, the series becomes % + % + i +oe X which is divergent.

fx<ll+x<2=—>1
1+x 2 )

1+2x2 i’
143x3<3=> > ~and so on
1+ 33 4

Hence Y u,, is convergent only if x > 1 and divergent if x < 1.

1+2x2<3=

1
4) Examine the convergence of the series Y., ( ':1) 2 xm

5) Settle the range of values of x for which the following series converge:

()Zl+xn 357

(b) +m+81012+ "

© (i)z + (ﬁ)z +(35) 4

Raabe’s Test:
Theorem:1

If ¥ u, and ¥ v, are two series of positive terms and if =1 < 2L for al| values

Un Un
of n after a certain stage, show that ) u,, will converge if ), v,, converges.
Proof:

Since the omission of a finite number of terms form a series does not affect
convergence. We can assume that the inequality holds for all positive integer values of
n.Thus

L Wl Bl no
Uy V3 Uy 7V Uz V3

Uy U3z Uy Uy V3 Uy
U Uy U Uy U U

1% 1% u
<u1<1+—2+—3+—4+---)
Vg V2 V3
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” 1 V1 U
<—W;+v,+v3+-)
U1
Since Z—i is a constant, and ) v,, is convergent and it follows that }; u,, is convergent.
Theorem:2
If ¥ v, diverges and if % > % then Y u,, diverges.

n

Proof:
We have

u Uy Uz Uy Uy Uz U
wy +up +uz + —u1(1+—2+—3+—4+ )—ul(1+—2+—3 2222 )
u U 1 v 1 vu1vu1 Uu3 Uuz Uu1
2 3 Uz 4 V3 Uy
>u1<1+—+—— === )
1 V2 V1 V3 Uy Vg
2 3 Uy
>u1(1+—+— —+-->
1 V2 U3
Uq
>v—(v1+172+123+"')
1

% is a constant, and )’ v, is divergent and it follows that )’ u,, is divergent.
1

Since

Raabe’s Test:

Let us compare the series ), u,, with the series ) n—lp
Proof:

> nip is convergent when p > 1 and divergent if p < 1.

: i Un+a nP
Y. Uy, is convergent,if o < YL

u n+ 1)P
ie.,if — >( ),
Un+1 np

1 p p(p—1
>S(1+-)P>14+—+—2
( n) n 2n?

u -1
i.e, ifn( n _1)>p_|_p(p—)+...
Un+1 2n

. . . uTL
i.e., if llmn( — 1) >p
n-oo s A\Unyg
But the auxiliary series is convergent if p > 1 which shows that ) u,, is
convergent when p > 1.

Un

i.e, if + -+ (by binomial theorem)

Up+1

. . .o Up nbP
And Y u,, is divergent if - < Grp

. Un 1

Le.,if <(1+-)?,
n+1 ( n )

u 1 -1
i.e., if un:L-l <1+ E)p <1+ % + pZT + .-+ (by binomial theorem)
u -1
i.e, ifn( z —1)<p+M+...
Un+1 2n
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o 1) < p, which shows that }; u,, is divergent when p < 1.

i.e., if limn(
n-oo Un+1

This test can be enunciated as follows:
The series whose general terms u,, is convergent or divergent according as

. un
hm{n( —1)}>10r<1.

n—oo Up+1
This 1s known as Raabe’s test.

Examples:
. l a 1.3.a(a+1) 1.3.a(a+1)(a+2) i .
1) Prove that the series 1 + ST 2450611) | 24001 D0B12) + ---is convergent if a >

0,b>0andb>a+;.

Proof:

Let u,, denote the nt" terms of the series. Then forn > 1,
~135..2n-3) a(a+(@+2)..(a+n-2)

Un=%46..2n—2) b+ DB +2)..(b+n-2)

Hence,
Uppy  @n—-1Mm—-1+a)
u, 2n(711—1+b) .
:>un+1:(1_%)(1+ar_l )

e (1)

Thus D’ Alembert’s ratio test fails.

Again,

<(2b—2a+1)+a;1)

e ae-g) (1445

Hence,

. u'Tl 1
hm{n< —1)}=b—a+z>1

n—-oo Un+1

Thus the series converges if b — a + % > 1.

2 2 2
an @x2+...+(n!) x™ ...

2) Discuss the convergence of the series 1 + x+
2! 4! (2n)!
Solution:
Leaving the first term u,, = &L xn
9 n (2n)!
Hence,
Uppy  (n+1) x
Uy, 2(2n+1)
Unsy1 X
U, 4

Hence the series converges if x < 4 and diverges if x > 4.
If x = 4, then D’ Alembert’s ratio test fails.
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Hence,
i { (un 1)}_1_ 2(2n+1) M= tim = -n 1<1
oo "\, ~abe "\ A+ D Tane 2m41) 2

Thus, the series diverges if x = 4.

Corollary:1
The series whose general terms u,, is convergent or divergent according as

Uy
lim{n( —1>}>10r<1.

n—o Upt1

Corollary:2
The series whose general terms u,, is convergent or divergent according as

= un
llm{n( —1)—1logn}>1or<1.

) n-0 Un+1

Do it:
) . 2x Bx)? 5, (403 3

1) Test for convergency and divergency of the series 1 + FX TS+

@) -1

(Zn)!x +

2 2 2

2) Examine the convergence of (%) + (g) + (%‘E) + -

Geometric series:
Consider the geometric series 1 + x + x2 + --- + x"
LetS, =1+x+x%+-+x" =%
Case(i)
0<x<1.Then (x") - 0= (5, —

. f 1
= the glven series converges to the sum T

1
1-x'

Case(ii)
x > 1.Then (S,) - xx—__ll . Also (x™) —» co,whenx > 1
= the given series diverges to the sum oo.

Case(iii)
x = 1.Then the series becomes 1+ 1 + -+ 1(n times) = (S,) = (n)
and hence (S,) = co,whenx =1
= the given series diverges to the sum oo.
Case(iv)
x = —1.Then the seriesbecomes 1 —1+1—1 ...

0, if niseven . ..
= (§,) - { 1 if nisodd and hence (S,) oscillates finitely.

Hence the given series oscillates finitely.
Case(v)
x < —1.Then (x") oscillates infinitely and hence (S,,) oscillates infinitely.
Hence the given series oscillates infinitely.

Thus the geometric series converges if 0 < x < 1, diverges if x > 1 and oscillates if
x < -1
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Theorem:
. . 1 ,. 1 1 1 .
Discuss the convergence of the series Zf{;lﬁ. (i.e., 7% T 2% T 3x T - 1S convergent when k

is greater than unity and divergent when k is equal to or less than unity)
Proof:

. 1
Given Y7, =

Case(i): when k > 1
The first term of the given series is 1—1,( =1.

Consider the following,
1 1 1 1 2 1
ﬁ+§<ﬁ+§=2—k= ST

And
1 1 1 1 1 1 1 1 4 1 1 1 \?
E+§+§+W<E+E+E+F=F=Mﬂ=@mﬂ=QbJ
Similarly,

1+1+1+1+1+1+1+1+1
8k = 9k " 10k " 11k ~ 12k ~ 13k 14k * 15k * 16k
1 1 1 1 1 1 1 1 1 8 1
SgcTgr gk g T Tge Tk Tk Tk T gk T grt

1 14\°
= 23(k-1) (zk—l)

Hence the whole term in the series, i.e.,
2 3

1 1 1 1 1 1 1 1 1 1 1
wtGtg)t (Erwtata) o <gramt () ) v
-——(

The right-hand series is a geometric series with common ratio 2k1_1 which is less than

1 as k > 1. We know that any geometric series is convergent if the common ratio is less than
1. Hence the series in the right-hand series of (1) is convergent.

Hence by comparison test, Yo % is convergent k > 1.
Case(ii): when k=1
Then the given series is equal to Z;’{;l% =1+ % + § + -
Consider the following,

) 1+1
202
11
2 2’
1+1>1+1_2_1
3 474 4 4 2
1+1+1+1>4_1
5 6 7 88 2
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1+1+1+ +1>8_1_
9 10 11 16~ 16 2’

We can group the series as follows:

1+1+<1+1) (1+1+1+1>+ S 4 sdi4isas1s <1> 1+ (5)
27 372) 5767778 27272 "\2 2/

n
:Z—>1+—,Vn.
n 2

n=1

I.e., the series greater that % + 1, which increase indefinitely with n.

Hence the whole term in the series, i.e.,

1+1+(1 1) (1+1+1+1) _il'd' .
> 3 4 5 6 7 3 = nlS vergent.

n=1
Case(iii): when k < 1
In this case, i > 1. Thus every term of the series Zﬁ_lik(after the first term) is

greater than the correspondlng term of the known divergent series Y.»_ 17 L Thus Y I
divergent when k < 1.
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Unit 111

Cauchy’s condensation test:

If (n) is positive, for all positive integral values of n and continually diminishes
as n increases and if “a” be any positive integer, then two infinite series
D+f2)+fB)+ -+ f(n)+--and a f(a) + a2f(a?) + ---. +a™(a") + --- are
both convergent or both divergent.

Proof:
LetX(m) =D +fR)+fB)++fl@)+(fla+D+fla+2)+
(a@+3)+-+f@)+ @+ +f(a>+2)+ f(a®>+3)+-+f(@a®) + -+
((a 1+ 1) + f(a1 +2) + f(a*1 + 3) + .-+ f(aM)
Let v, denote the terms of the nth group
(a1 + 1)+ f(av1 +2) + f(a» 1 + 3) + - + f(a")
The number of terms in this group is a» — an—1.
Since (n) is a decreasing function,
(ap — amD(@) < v < (@ — a*Df (ar1)
= (a—-D*f(a) <v < (a—-Da'f(ar 1)

a
Now, if 3 an(a) is convergent, then so is ) v, (taking the right-hand half of last
inequality)
> (n) is convergent.

if X arf(a) is divergent, then so is }; v, (taking the left-hand half of first
inequality)

> (n) is divergent.

= Y (n) & Y a*f(an) are both convergent or both divergent.

Problems: L1
1) Show that the series 1 + E + 5"‘ " is divergent.
Solution:
1
Let(n) = —,
n

1
Then, >’ (n) = X2 - & Y ar(an) =), 2f(2"), by taking a = 2.
1
= > 2n__ _ —
2 F=Il=1+1+
1
= 3" —and } 1 behave alike.
n
But 1 + 11+ ---is divergent.

=) n—is divergent.
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2) Examlne the convergence of the series
a) Z _
Solution:
Let (n) =1

nk*
Then, ) (n) & Y. a*f(am) behave alike.
1
= > ar(an) =D 2n -
(2n)k 2(k—1)
which is a geometric serles and it is convergent or divergent accordingto k > 1 ork < 1.
= Z— is convergent or divergent accordingto k > 1 ork < 1.

,by taking a = 2.

1

b) L 4+ + 1 + et 4
1.2 (2n+1)(2n+2)
Solutlon.
Let (n) =

2n+1)2n+2)
Then, ), (n) & Y a*f(a") behave alike.

1
= n(qn) = 2n . _
2ar(am) =3 (2n+1)(2n+p,bytakmga— 2.
= > avam) =3
2”(2+ )(2+ )
LetUn = ! 5 = lim Un = 0.
2n(z+—)(2+;l) e

=) (n+ D@n +2) is convergent.

O 1+-+1+.
3 5

Solution: )
Let (n) = (27’1——1)
Then, ) (n) & Y af(am) behave alike.
1
= Z an(an) = Z 2n m,by taking a=2.
211 _ 1
= Y af(a) =3 =27
@ @
Let Uy = ——— = lim Un = — 0,
e 2

1

=) (mls divergent.
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d) =2+ 23 4.

345 456
Solution:
L n+1)
t = .
et(n) nm+2)(n+3)(n+4)
Then, ), (n) & Y a*f(a") behave alike.
1+
= Y arf(an) =3 2 ,by taking a = 2.
1+ )0+ =)0+
"1 2n 2n
(1 +_)
LetU = 5 20 4 =>1limU=1=+0.
n (1+L)(1+L)(1+l) nooo
R G A
2 m+2)n+3)(n+4) s divergent.
)%
n(logn)?
Solution:
1
Lt = g my
Then, ) (n) & Y a*f(a™) behave alike.
1
= > ar(an) =3 an —— bv taki — an
an(log n)r’ 1y axmngn = as
=>Xava) =3 _______
(log am)p
=>Xaa) =3 ________
(nloga)r
1 1
Then, ) ———& (ogn)? > (1 OgT)pbe%h converge or diverge together and

the second serles becomes,

1 1 1 1
2 (n loga) 2 nr(loga)? logar < nv
1
=y (log )p ————=eonverge or diverge according to p,

1
i.e.,ifp < 1,then ZnTlS divergent and if p > 1, then }; np—is divergent.
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2 3 4
DETRETRE TR

Solutlon

(n+1)

Let (n) = .
np
Then, ) (n) & Y a*f(an) behave alike.
2(2n+1)
= Y a*f(an) =3 S , by taking a=2.
2n.2n (1 + %) 1+ D 1 +_)
(n+1)
= > is convergent if p > 1 and is divergent, ifp < 1.

Cauchy’s root test:
If Y ;Unis a series of terms, Prove that the series is convergent or divergent

according as lim Unn <lor>1.

n—oo

Proof:
1
Case(i) lim Upn= [l < 1.

n—>oo0

Hence we can choose ¢, positive and sufficiently small, so that [ + € < 1.
1
Since lim Un~= I, we can find a natural number “m” so large so that Urdiffer
n

n—>oo

from *** py less than €, so long n > m.
1

wUn<lte=>Un<(+e)m
Hence from and after the mt" term of the series };%_; Ux are less than those of the geometric
series ).(I + €)™ which is convergent since [ + € < 1.
= Y =1 Uy is convergent.
1
Case(ii) lim Upn=[,1 > 1.

n—->oo

Hence we can choose ¢, positive and sufficiently small, so that I — e > 1.

1
Since lim Un== I, we can find a natural number “m” so large so that Urdiffer
n

n—oo

from *** py less than ¢, so longn > m.
1

~Ur<l—e=>Un>({—e)n
Hence from and after the mt* term of the series ©_, U, are greater than those of the
geometric series Y.(1 + €)™ which is divergent since [ — e > 1.
= Y o1 Un is divergent.
Y. Uy is convergent, if [ < 1.
Thus lim Unn ={ Y un isdivergent, if > 1.

e the test fails, ifl = 1.
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Problems:
1) Test the convergence of the following series:

aya+b+a?+b%2+a3+ b3+

Solution:
‘l’l+l
- .
LetUn=fl L when n is odd or
b2 whennis even

n+l 1/n

1 (a 2) , whennisodd
=>Ur = 1 or

S

n
I (b2) , whenniseven
1+-1

- U7711 — {a 1Zn, when n is odd or
b2 whennis even

1 1+L1 _

= lim Un =fl 2n, whennisodd .
n—oo n 1 )
b2 when nis even
1 1

. 2 i
> lim U = {al, when n is odd or

n—-oo = .

b2 when nis even

Thus the series converges if 0 <a < 1,0 < b < 1anddivergesifa>1orb > 1.

b) 2 ((n+1) (n-:ﬂzl) ...(n+n))

Solution:
Let Uy = n+1)(n+2)..(n+n)
nTl
1 (n+1)(n+2)...(n+n)"1‘
=Unr = ( o )
1 2 n on
1 1 . (1
I N G +n))
n nn

1

= lim Ujl = lim ((1+ 1) (1+ E) (1 + E));

n—oo n—oo n n n

Let this limit be "I".
1

1 2 n n
= lim ((1+—)(1+—)...(1+_)) =1
n n n

n—>oo

Taking log on both sides,
1

= log{lim ((1 + 1) 1+ E) (14 _’3)_"} = logl
n n n

n—->oo

r
=logl = lim } (1 + )
n—>co n
r=1
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1
= log! = [ log(1 + x) dx
0

u=log(1+x) [dv=[dx

1
du =

1+x
By the formula, [ u dv = uv — [ v du, we have,
logl = (xlog(1 + x)! — [ x.( ) dx
) —

dx v=x

1+x
box

logl =log2 — d

= logl = log f01+x X
1x+1-1
:logl=log2—fx—dx

o 1+x

Ix+1 1

:logl=log2—f01+xdx—j;1+xdx

= logl =log2 — (x —log(1+x))}+¢
= logl =1log2 — [(1 —log2) — (0 —log1)]
= logl =1log2 —[(1—log2)]
= logl =2log2 — 14=10ge4—410gee

= log ! = loge (E) =>1l=-

e
Hence ) U, diverges.
2) Examine the convergence of the following series:
a) Yl
1}71
Solution:
xn
qn
1 x" n X
1
=>limUr=0<1
n—->oo n
Hence ) U. converges.
1
b) X (log )
Solution:
1
LetU, =
" logn)
1 1 11
= Un = ( = =0<1
n (logn) o

Hence }; Un converges.
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0 LWn-1)

Solution: .
LetUn=(n—-1)
1
=>Un=+vn-1

= lim Ut=yeo—1=00—1= 0

n—oo n

Hence }; U, diverges.

d) X

a+y
Solution:

Let Un = 177.2
1+

1 1

ﬁUﬁl:ﬁ
(1Jﬁ)
= lim U= <1

noowo N e

Hence }; Un converges.

3) Investigate the behaviour of the series whose general term is 2

) Y
Solution:
n!
Let Un ="
1 n! &
>Ur=(_)
n n
n

n n nn 171
Now log 1 — =1l log™ _
gnlinw(nn) Jim — 2. log— = f log x dx
n=1
u=logx [dv=[dx
1
du =—dx v=x

X
By the formula, [u dv = uv — [ v du, we have,
nl 4 1
log lim (7)) = (xlogx)é — [x.(O)dx
n—oo nTL

Hence ), U, diverges.
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4) Show that the series }; (%) is convergent if r < 1 and divergent if r > 1.
Solution:
n
LetU, = ((nn-l;—Jrll))
1
=>Ur = (n-:—fl)r

= lim U" =r
n—oo n
If r < 1, the series is convergent.
If r > 1, the series is divergent.

If r < 1, the test fails.
n
(n+1))

nTl+1
n

1
14+
:Un:M

Now, U, =

n

Take Vn -

n

S e

1
:>Qn _ 1+)
Va n
=lim " =e.
n-o V',
Hence Y. Un & )’V both converge or diverge together. But ), V» is divergent if r > 1
and convergent if r < 1 implies ), Uy is divergent if r > 1 and convergent if r < 1.

11’1
xn=(1+—)
n

Alternating series:
I. Absolutely convergent series:
The series ), Un containing positive and negative terms, is said to be absolutely
convergent, if the series formed by the numerical values of the terms of ) Un. i.e.,
Y. |Un| is convergent.
Example: L

. 1 . . . 1
The series1 — _+ _— __+ ---is absolutely convergent, since the series 1 + _+
22 32 42 22
1 1 e ]
=+ + .-+ is convergent.

Problems:
1) Test the convergence of the series:
2™n!
(@ X—
- nn
Solution:
2m!
Let Un =
nn 1
1 2mln
= Unr = ( n”)
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1 123.n.
S U =265 )
123.n#%
:>11mU71—211m( )
n—co n-ow MN..N

=>11mU"—211m Zlogn Zflogxdx

n—oo n—)oonr1 n 0
u=logx [dv=[dx
1
du = —dx vV=X
X

By the formula, [ u dv = uv — [ v du, we have,

2 [Hogxdx = (xlogx)! — [ x. ()dx

1 0 ’ * 2 2
= 2 logxdx = 2[0 — (x)(l)] = —2logee = 2logeel =2e 1= _=__

0 e 271

1
=2[logxdx =071<1
0

Hence ), U, converges.
(b) X 2™ (Try this)
nn

I1. Conditionally convergent series:

The series ), U, containing positive and negative terms, is said to be conditionally
convergent or semi-convergent, if the series ), U, is convergent and Y. |Un| is
convergent.

Example: . )
The series 1 — %+ % ~ + -+ is conditionally convergent, since 1 + 5 + 3 +

14 ... isdivergent.
4

Theorem:1
An absolutely convergent series is convergent.
Proof:
Let ) U, be the given series. Then by hypothesis, Y. |Ux| is convergent.
2Uy, if Unis positive
Now,Un + [h | = { 0, ifUnis negative
=~ Every term of the series },(Un + |Ux|) is positive and is less than or equal to the
corresponding terms of the convergent series 2 Y| Un|.
Hence ).(Un + |Ux|) is convergent.
Since Y. |U4| is convergent, the series formed by the difference of the corresponding
terms of both the series is convergent and hence ), U, is convergent.
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Note:
(1) When we say that Uy, is absolutely convergent, we assert the convergence of another
series ), |Ux| and not that of }; U, alone.
1

(2) If after a stage |@| < kor |@|n_< k, where K is fixed positive number less than
U U

infinity, then )} |Ux| is convergent. Therefore, if one of the above conditions is
satisfied, then ), Uy is absolutely convergent.

(3) If two series are absolutely convergent, then they can be multiplied and the resulting
series is also an absolutely convergent series.

Theorem:2
If the term often absolutely convergent series are rearranged, then the series
remains convergent and its sum is unaltered.

Theorem:3
In a conditionally convergent series, a rearrangement of the term alter its sum.

Series whose terms are alternately positive and negative.

Theorem:4
If U1 — Uz + U3z — Us + - isaseries of terms alternatively positive and negative
and if Un > Un+1 for all values of n, and if lrilglooun = 0, then the series is convergent.

Proof:

Let S2, denote the sum to 2n terms of the series. Then

(U1 —Uz)+ Uz —Us) + -+ (U2n-1 — U2n).
Since each bracket is positive, Sz, steadily increases as “n” increases.
e, S2<84<86..
Without altering the given order of the terms, the sum S2, may be written in term
S =U1— U2+ U3) — (Us — Us) + -+ (Uzn-2 — U2n-1) — U2

Since each bracket is positive, Sz, less than Uy, lim S2, exist and equal to “I” where | < u;.

n—>co

But Szn1 = Son + U2ny1 and lim S2p1 = [+ 0 implies lim Sz2p1 = L

n—oo n—oo

Hence the series is convergent.

Problems:
. 1 41 1 .
1) Prove that the series 1 — E t37 Z+ """ Is convergent

Solution:
In the given series,
(i) The terms are alternatively positive and negative.
(i) 1> % > % > i > ---l.e., the terms steadily decrease in numerical value.
(iii) lim U, = 0.

n—>o0

Hence the three conditions for convergence are all satisfied and hence the
series converges.
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1
2) Discuss the convergence of the series Y(~1)""! (—) when 0 < p < 1.

Solution: )
Given: Y, (—1)»1(_) when0<p < 1.

npP

1 1
If p = 1, the series becomes, 1 — 5 + 3 i+ ** which is convergent.

1 1
If p = 1, the series ¥.(—1)""! (=) becomes }.(—1)""1 4 where U, = —-
T 1 i
Now Un Z?p = Upt+1 = m
Un+1 — X nP
U (n+1)r

=

Un+1 n°P

=

17 P
e (1+) A+
1

; —3 Un+1
Sincep>0& (1+ 7/ >1, U= 1P 1.

a+,)

Thus Un+1 < Un
lim U, = lim 1p,p > 0.

n—oo n—-ocon

Hence the series converges.

. . x2 X3
3) Examine the convergence of the series ﬁ —ratim- o, 0<x<1
Solution:
The terms of the given series are alternatively positive and negative.
xM xn+1
NowlUn =7 = Unit = Tt
xn xn+1
= Un—Un+1 = XM 1
x(1 + xntl) — xn+1(1 + xn)
(1 4+ xm)(1 + xnt+1)
x(1 —x)
(1 +x)(1 + xn+1)
Since x is positive and less than 1, U, — Un+1 = a positive quantity and hence
Un = Un+1 + a positive quantity = Uy > Uny1.

= Un—Un+1 =

:>Un - UTL+1 =

n

1
:>Un=—1=>1im Upn=00<x<1&x"—>o0asn— o
xn (1 +;) .
Hence the series converges.

Now Up =
W =T e

4) Examine the convergence of 1 — % + % _ ﬁ_l_

Solution:
In the given series,
(i) The terms are alternatively positive and negative.
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(i) 1> % > % > 1_13 > ---l.e., the terms steadily decrease in numerical value.
(iii) lim U, = 0.

n—>oo

Hence the three conditions for convergence are all satisfied and hence the
series converges.

5) Discuss the convergence of (a) ».(—1)»1 (—"1)
n+

Solution:
The terms of the given series are alternatively positive and negative.
n
Now U, = = —F
n+ 1 -Ii
= Un—Un+1=n+1_n+
U U (n+2)—(n+1)2
= n— ==
i (n+ 1)(n +2)
n2+2n—-—n?-2n-—
2 Uh=Um=— 3D+ G+rDn+2)
This series is not steadily decreasing and lim U, = 1.
n—oo

Hence the series is not convergent.

Note:
It is important to note that if anyone of the conditions for convergent is removed,
then the series need not be convergent.

Examples
1) 1 R i 1 S — + -+ Hence the terms are alternatively positive and negative and
steadlly decreasmg in numerical value.

LetUn=1+__= lim U, =1 # 0 = the series converges.

?r n—>oo
1 1
2)5 =—[ 12n] & S =1+—[ 1.2n+1
2n 5 170) ] 2n+1 , 11C ]
1 1
~ when n - o, Sz, - 3 and Son+1 — 1.§
= the series oscillates finitely.
3)1—_ + = + —— 15 +1 i -. Hence the terms are alternatively positive and negative
and hm Un =0. But the terms do not steadily decrease in numerical value. Thus the series

n—>oo

is not convergent.

4) 1 +11§ + 414 divergent and since §+ %_,_ 2 4+ ... is convergent, the series 1 — Tt
1 3 4 8 2

ST 3 + -+ is divergent. Here the terms steadily decreasing in numerical value and

lim U, = 0. But the terms are alternately positive and negative.

n—>oo
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5552 + = —= + - is absolutely convergent.
The terms of the given series arle alternatively positive and 1negative.

NOWUn_Z(Zn—l) = Un+1 =

= Un_ Un+1 =

(2n + 11) (2n+2)

22n—1) @n+1(@2n+2)
2n+1)(2n+2)-22n-1)

2(2n — 1)%27111_:—21) (2n+ 2)

= Un_Un+1 =

= Uy —Upp1 =

22n—-1)(2n+1)(2n+ 2)

= Un — Un+1 = a positive quantity = U > Un+1 + a positive quantity = Un > Un+1
Here the terms steadily decreasing in numerical value and lim U, = 0.

n—>oo

Thus the series is absolutely convergent.

Do it:
1) Test the convergence of the following series:
a) (-1 (—)
b) Z(~Dr c—)
c) 1-— _\/24 _\/?— e+t

4

4 L1 1(—)
&) Y(—1)m 1(_) n>1

f) X(=Dn
2) Show that 1 — ﬂ + s ﬁ + .- is absolutely czoznveBngent.
3) Test the absolute convergence of the series* ——_ 4+ — -
2! 3! 4!

4) Show that ¥ (—1)"-1 (vVnz + 1 — n) is conditionally convergent.
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UNIT IV-BINOMIAL THEOREM FOR A RATIONAL INDEX

Binomial Theorem for a Rational Index

I. Introduction:
If nis a rational number and —1 < x < 1.i.e., |x| < 1, the sum of the series

nn-1 nn-1 n—r+1
1+—+¥X + .o 4 ( ) ( ) 7'_|_...
1! 2! r!

is the real positive value of (1 + x)™. This series is also represented by f(n). This series is
absolutely convergent if [x| < 1.

Similarly,
mx m(m-1) , m(m—1) .. (m—r+1)
; f(m)—1+T+T + - 0
an
f(m + Tl) -1+ (m+n)x + (m+n)(m+n-1) X2 4. (m+n)(m+n 1)..(m+n—-r+1) X" + -

2! r!

are absolutely convergent if |x| < 1.
f(m). f(n) = f(m + n), for all values of m & n, provided that x is numerically less
than unity.
Hence f(m) & f(n) can be multiplied and the resulting series is also an absolutely
convergent series.
Moreover, f(m).f(n).f(p)..sfactors = f(m+n+p + -+ s terms).

Note:
1. The sum to infinity of the binomial series for any given value of x for which is
convergent has only one value. Hence (1 + x)™ is taken to denote the positive value
1

of (1 + x)™ For example,(l + %)_E = i—%x/§ .But only +§\/§ is taken as the value.

2. When x =1, the binomial series is convergent if n > —1. When x = —1, the
binomial series is convergent if n > 0. Hence the binomial expansion is valid for
x =1,whenn > —1 and for x = —1, when n > 0.

I1. Some important particular cases of binomial expansion:

1. A—0)t=1+x+x%2+x3+-
2. 1—-0)2=14+2x+3x*>+4x3+ -+ (n+x" + -
3. 1-x)3= %{1.2 +23x+34x2+45x% .+ (n+ D(n+2)x" + -}
4. (1-x)7*=2{123+234.x+345x% + - +nn+ D@ +2)(n +3).x" + -}
5. (1—x)"= 1+ +n(n+1) X2+ - +n(n+1) r'(n+r+1) X+ o
6. (1—x)" 2—1+1x+13 X2 422253 4
2 246
7. 1—-x)" 3—1+1x+14 24 220 x3 4o
3 3.6.9
Problems:

2
1. Find the general term in the expansion of (1 + x)s.
Solution:
The binomial expansion is given by
nx nn-1 nn-—1 n—r+1
(1+x)"—1+F+%x2+--- (n=1). rf ) yr
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nn-1)..(n-r+1) X
r!

The general term is (r + 1)t term =

. 2
Given: n = 3

(%(§—1)(%—2) ...(%—r+1)>

T

Ury1 = 1 x
GEHE9-659)
= X
_2.(-D. (—Z)! . (5=3r) |
- 3771 x

_ (-1)"12.1.4..(3r-5) o
3"r!

2. Expand (a) (1 + 3%)2 given [x| < g

(b) (a® - 2a2x)§ in ascending powers of x(TRY IT).
Solution:
(a) The function can be expanded in ascending powers of x if |3x| < 1, if |x| < é

5 5
(1+3x)2=1+nC;(3x) + nC,(3x)? + - + nC,,(3x)™ (sincen = E)

5 5\ (5 5/5 5
1+ 3x)g =1+ (7)1('336) + (i) (3_ 1) (Bx)% + - +7(7_ 1) S?_ i 1) Bx)" + -
5,3\ 53/3 \2 53.1..(7—2r) /3 \"
=1+ﬁ(§")+7(§") ot l (5")_

The general term is (r+1)" term
~531.(=1).(=3).(=5) ..(=2r = 7) (E )r
a r! 2x .
53.1.(1).(3).(5) ..2r=7) /3 \"
7! (§x> >3

= (-1

14
3. Find the first term with a negative co-efficient in the expansion of (1 + 2x)3.

Solution:
The general form is (r + 1) term = (&) (?_1)(?;!2)'"(?4“)) (2x)"

The 15¢negative term will occur for the least value of r such that

<14 +1)<0 17 <0 < 17 >17 >5
— = — S5 r<——>s —= -
3 3 7 r 3 73 T3

i.e.,r = 6,therefore the value is equal to

(BHE-)EF-2E-3)E-9E-9)

o (2x)°®
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- 6! (22)° = 6!

6
. —1411852.1 (2) y
3

4. Find the greatest term in the expansion of
13
(a) (1+x) wherex = = (b) (1 - x)*/swhenx = 2(TRY IT)
Solution:

Given(1+x)12_3&x=§,n=§
BB G
r+1 r!
(BE-)E-2) B
r (r—1)!
BE-0)G-2)-GF=r1)) .,y
Urys _ "
Y (RDE-DG-2)-(Fere2))
r—1)! '
U (1—5—r)2 15— 2r U}
e e s
s
3 >1=215-2r=3r=>15=>5r=>r < 3.

The value of the greatest term (r = 3) =

(DE-1) 2 1311 (1>2_

21 21 \3

I11. Approximate values:
1

1. Find, correct to six values of decimals, the value of 1.
(9998)4
Solution:
Given
1
1 1 1 1 1 2 \4
1= 1= 1= =151~ 107)
(9998)F (10000 —2)z (10*-2)7 (1 _1)4
104
1 2
TP T T 100
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L1 1 1+<_1)( 2>+<(_Z)(_1_1)>< 2):...\

1770 4)\" 10% 21 " 10% /

(9998)4

—

-1 —1|1+(
-1
(9998)7 10\

. 1 _ 1 N ( 1 ) N ( 5 )
(9998)% 10 \2 x10° 8 x 10°
1
= == 0.1+ 0.000005 + 0.000000001 = 0.100005001 ~ 0.100005.

(9998)%

1 )+(&><@>)(4>+‘_,

2 x 104 2!

1 1
2. Calculate, correct to six places of decimals (1.01)z — (0.99)z.
Solution:

Given: (1.01)z — (0.99)2
1 1 1 1 1 1
Consider (1.01)z = (1 4 0.01)z = (1 + x)z and (0.99)z = (1 — 0.01)z = (1 — x)2

’M;:Hlﬁ(@)@—1>)x2+(<%><%—1><%—2>)x3+_“
y 2 2! 3! )
(l_x)%z1_1“(@)@—1>)x2_(<%>@—1><%—z>)x3+'__

2 2! 3! )

1+ x)% -1 —x)%

D - @) N x3 N 105x° . +1 5, 105
= — = — —_

T ox2x2 "16x120° ~*Tg* T1o20*
—XTgY T3t T*¥TgY T128”

When x = 0.01,
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1L-@

(0.01)% 7 ;
= 0.01+——+2(0.01)

+ terms not affecting the eighth decimal places

= (1) -(2)=0. 01 + 0. 000000125 ~ 0.010000

3. When x is small, prove that 2=2% iJ’(l 4 =142 ~x% + 4x%. (appro)

(1-3x) 3+(1-4x)~ 4

Solution:
2 3
(1-3x)3+(1—-4x)2=

(1—3%)73 + (1 — 4x)3

_3 (_§_1>
:1+§<3x)+(-§)(-%—1)<—BX>2+---+1+%<4x>+< e
1 1
(-3)(-3-1) 302 (D50
1+ (BX)+ ] +o+ 147 (4x)+ 5 (—4x)2 +
(1—3x)3+(1 4x)4 1+ 2x + 5x2 + - +1+3x+%x+
(1—3X)3+(1—4x) 1+x+2x2+~-+1+x+%x2+...

5 31 ,
<2(1+2x+4 )) ( 5 31 ( 9 -1
= 1+-= x+—x) 1+x(1+—x>>
2(1+x+%x2) z2- 4 4
31 5

5 9 3
=1+§x+zx2—x—zx2—zx2+x2=1+Ex+4x2

4. Show that vx2 + 16 —/x2 + 9 = 2—7x nearly for sufficiently large values of x. (TRY IT)

IV. Exponential and Logarithmic Series
The exponential theorem:

X 2 n
For all values of x, (1 +o+—+ i) =1+>+ 4+t
1! 2! n! 1! 2! n!

B x  x? x™
SeX =14+t —
Note:
X X x2 2 X n
a*=1 +;logea +Z(logea) 4 ot E(logea) +
For a* = el09.a" — gxlogea.
2
1. Show that the co-efficient of x™ in the infinite series 1 + 2%+ (b+2a'x) +
eban
coe ls 3
n!
Solution:
2 n )
1_I_b+ax (b+2a'x) +m(b+:11'x) _ pb+ax _ gb eax—eb(1_|_ +( ) .\

(i_x) + )

Page 5|9



UNIT IV-BINOMIAL THEOREM FOR A RATIONAL INDEX

b n
The coefficient of x™ is ——

1+2x = (142x)2
+ o

b
2. Prove that the co-efficient of x™ in the expansion of 1 + + --is Zn—le.(TRY IT)

_ 242
3. Find the coefficient of x™ in the expansion of (1+Zz—x3x) (TRYIT)

2 2 3
4. Find the sum of the series 1 + E + 1+3+3 + 14343743 + - 00

4!
Solution:

143 1+3+32 143432433

Given T+—-+ + ” + -0

1+3+32+ +3n-1

LetU,
n!
3"—-1 1 13"-1 1,3 1
3—1 n! n! 2 n'\2! 2
Then
U_1<3 1>_U_1 3 1\, _1(3 1
1T\ 2)0 2T 2ai\2 T 2)7 T3\ T2
and

s=1 3+32+33+ +3n+ 1{1+1+1+ 1y }
21 2 3' 2011 21 7 31 n!

{e—1-e+1} {e’—e} efe?-1}
2 2 2

S—1 3-1 1} =
= _E{e - }_E{e_ )=

(n+1) e (b) 12+22 12422432

5. Find the sum of the series (a) Yn-o 3l

Solution:

+ - (TRY IT)

. w @m+1)3

Consider 37—~ x"
Put(n+1)*=4+Bn+Cn(n—1)+Dn(n—1)(n—2)

Putn=0=>A=1,n=1=2B=7n=2=>C=6;n=3=D=1.

Let the sum of the series be (S)

[ee] 3 co _ _ _
z(n+1) n=5=z<1+7n+6n(n D+nn—-1)(n 2)>x”

n!

=S = Z—x +Z X" +6Zn( Zn(n—ln)!(n—Z) n

o

nan Z TR +6Z(n—2)' Z R
Now

n=0

1 x x? o
A= 14
o n=0
1 o x? x3 x x? .
Z(n—l)' —x+§+§+-- <1+1|+§+ - ) xe
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Similarly Z ! x" = x2%e%; Z ! x"
— 21 ! — 3!
] (n—2)! ] (n—23)!

=> S =e* + 7xe* + 6x%e* + x3e* = e*(1 + 7x + 6x2 + x3).

— x3p%

V. Modification of the logarithmic series
f-l<x<1l,i.e.,|x|<1

x?  x3
We have log(1+x) =x ——+—>— - ———()
2 3
Wehave—log(1+x)=x+x7+x?+-—- )

Adding (1) and (2), we have,
x3 x5
log(1+x) —log(1—x) = 2<x+?+g+--->

:Mﬂ(Hiﬁ_Z...)
log(1 — x) 3 5
Note:
1 1 1
10g2=1—§+§—z+---
Solved Problems:
1. If x > 0, then prove that log x = + ;E;_SZ) 3 (;_1;3 + -
Solution:
x—1 1(x*-1) 1 x3-1
1 2+ D2 3G

o x +1 x? +1 x3 N
S\ +1 2(x+ D2 3(x+1)3

( 1 +1 1 +1 1 4 )
x+1 2(x+1)2 3(x+1)3

x—1 1(x*-1) 1 x3-1 ( ) ( )
= — .
x+1 2(x+1)2 3(x+1)3 x+1
x—1 1(x2—1)+1x—1 (x+1—x)+l (x+1—1>
ﬁ —_—
r+1 2 D2 3G B\ x+1
x—1+1(x —1)+ x3—1 . ( 1 )+l
=
x+1 2(x+1)2 3(x+1)3 o8 x+1 °8 x+1
X
x—1 1(x*-1) 1 x3-1 (x+1)
Th = = 4o =1 =1
] 2(x+1)? 3(x+1)3 (1 08 X
x+1
And this is valid if
X 1
| | |<1& <l=|x+1>1=>x>0.
x+1 x+1 +1 x+1
1, 1\ 1, /1 1|1 1, 1)1

Solution:

Page 719



UNIT IV-BINOMIAL THEOREM FOR A RATIONAL INDEX

1+<1+1) 1+(1+1>1+(1+1)1+
2 3)°4 \4 5)42 \6 7/43
_(11 11 11+ >+<1+11+1 1+1 1+ )
" \274 4742 6743 3°4 5742 7743
_<1 1+1 1+1 1+ )+1+ 1+1 1+1 1+
T \2722 4724 6726 1( 3°22 524 7726
Put sz
2 x4 X6 2 x4— x6
S 2+4+6+ >+<+3+5+7+>
xZ x22 X23 x x22 X23
=_+()+()+___+1+_()()+
2 4 6 3 5 7
1
o

Now, Put x = %

(D)1
)=

1
= Eloglz = logV12

= 11 (1 1>+l
zog 4 8

3. Find the sum of the series }:7—, (2n—1)(21n)(2n+1) :

Solution:

1

letUn = G = D en+ D
A B

Now U,

T @n-DEnEn+ 1) “m-itmtmyr W
=1=A402n)2n+1)+B2n—-1)2n+1) + C(2n - 1)(2n)

1
Solving the above equation, we have A = E; B=-1;,C ==

>
. 1 1 1+1 1
x) = —. -+,
" o22n—1 2n 2 2n+1
Nowp. < L 1 1+11U_11 1+11U 11 1+11
WL =0 1727232737475 3T 5 6727
. " _ 11 1+1 1+11 1+1 1+11 1+1 1+
= =———=+-.s+s s+ =+ —=+=.2
um of ”e”fsz1223 2'3 4725725 6727
=—E+log2.
4. Show that —— + —— + ——+ - = —1 + 3log2 (TRY IT)

123 345 567

5. If a, b, c denote three consecutive integers, then show that
1 1

2ac+1 + 3 (2ac + 1)%

1 1
log.b = Elogea + Elogec +
Solution:
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1
1+2ac+1

1

ITES
_11 +11 +1l 2ac + 2
_1l +1+11 ac+1_11 ac+1_1l (ac +1)
—Zogac 2 2og p” —zogac. s —zogac .
If a, b, c denote the three consequtive integers,thenb =a+1&b =c — 1.

a=b—1;c=b+1&henceac=b?>—-1=ac+1=h2

1 1 1
RHS = Elogea + Elogec + Eloge

1 1
= Elog(ac +1) = Elogb2 = log b.

Hence proved.
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I.  Summation by difference series
Consider the series uy +u, +uz + -+ u, + -
From this series, a series of differences, u, — uy, us — Uy, Uy — Ug, ... U, —
Up_1, Ups1 — Up, ... MAyY be constructed. Hence we can write,
U, —u; = Ay
Uz — U, = Au,
Uy — Uz = Auy

Uy — Up—q = DUy
Ups1 — Up = DUy
and call the series Au,, Au,, ..., Au,_1,A. This is the series of first differences.
Similarly,  writing  Au, for Au,,; —Au,, we call the series
A%uy, A%uy, ..., A%u,_;, A*u,. This is the series of second differences.
In a similar way, we can form the series of 37¢, 4" 5th | kth differences.

Il. Successive differences series
Let U,, be a polynomial of degree "k" in "n".
Let the polynomial be a,n® + a,_n*=* + -+ ayn, + a, and
AU, = Upy1 — Uy
S AU, = [ay(n+ D +ap (n+ D1+ -+ a,(n+ 1) + ag] — [agn®
+ ap_n* 1+ +an+a,
= AU, = ap[(n+ 1D =nfl+ ap_1[((n+ DT —nk 1]+ +q
= AU, = ap[kCin* Y + kCn*2 + -1+ ap_1[(k —1DCn* 2+ -]+ a,
Thus, AU, is a polynomial of degree k — 1 in "n"
A%U, is a polynomial of degree k — 2 in "n"

AXU,, is a polynomial of degree k — k ,a constant.
~ (k + 1)™ difference series consist of zero only.

For example, consider the series whose general term is n3 + n.
Hence the series U, is 2,10,30,68,130,222,350, ...
AU, is 8,20,38,62,92, ...
A%U, is 12,18,24,30,36, ...
A3U, is 6,6,6,6, ...
A*U, is 0,0,0,0, ...
Problems:
1) Determine the general term and sum up to “n” terms of the series 4 + 14 + 30 +
52+80+ 114 + -
Solution:

Zun=4+14+30+52+80+114+---
Z Au, is 10,16,22,28,34, ...

Z A2y, is 6,6,6,6, ..
z A3u, is 0,0,0,0 ...

6.9

. Uy, 1S a polynomial of degree “2” in “n”.
Letu,beay,+a,(n—1)+a,(n—1)(n— 2).
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Putn=1,u, =aq,a,=4
n=2,u,=ay+a,=>14=44+a,=>a, =10
n=2uz=ag+2a, +2a, >a, =3

Thusu, =4+10(n—-1)+3n—-1)(n—-2)

sn=4Z1+1oZ(n—1)+3Z(n—1)(n—2)
nn-—1 nn—-—1)n-2
=S, =4n+10 (2 ) 4 3™ 3),( )
>S,=4n+5mn—-1)+nn-1)n-2)
=S, =4n+5n* = 5n+n3—3n%+2n
=S, =n+n*(n+2)
= S, =n(n+ 1)2

2) Find the nt" term and sum up to “n” terms of the series 10,11, 14,21, 34,55, 86, ...
Solution:

Zun =10,11,14,21,34,55,86, ...
Z Au, is 1,3,7,13,21,31, ...
ZAzun is 2,4,6,8,10, ...
ZA3un i52,2,2,2 ...

Z Atu,, is 0,0,0,0 ...
~ Uy, 1s a polynomial of degree “3” in “0”.
Letu,beay,+a,(n—1)+a,(n—1)(n—2).
Putn=1,u, = aq a9 =10
n=2u,=aq+a,=>11=10+a;,=>a;, =1
1
n=3,u; =a0+2a1+2a2:>a2=1&a3=§
Thus u,, = 10+(n—1)+(n—1)(n—2)+§(n—1)(n—2)(n—3)

Sy = Z 10 + 102(71 -1+ Z(n - 1Dn-2)+ %Z(n —D(n-2)(n-13)
nn—1) N nn—1)(n—-2) l(n —1D(n-2)(n—-3)

=>5,=10n+ 3 3 7
nn—-1) nnh-1)n-2) 1
=5,=10n+ + +E(n—1)(n—2)(n—3).

2 3

3) Determine the n®* term and sum up to k*n* terms of the series 6 + 9 + 14 + 23 + 40 + -
Solution:

Zun:6+9+14+23+40+---
ZAun is 3,5,9,17, ...
z u, is a G.P of common ratio 2.

Z u, is of the form a.2"~! + x, a polynomial of degree one.
Letu, =a.2" '+ ay+a;(n—1)
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Putn=1u;, =a+aga+a,=6 ———(1)
n=2u,=aq,+a;,+2a=>9=ay+a; +2a ———(2)
n=3us=ay+at+a, = 4a+a,+2a =14 ———(3)

On solving (1), (2) & (3),a =2,a; =1
Su, =22"1+44+n-12u,=2"+n+3

5= S ey s

nn—1
:>Sn:2+22+23+...+2n+¥+3

nn-—1
=>Sn=2n+1—2+(T)+3Tl.

n

Do it:

1) Find the n*" term and sum up to “n” terms of the following series:
(@) 1,2,3,6,17,54,171, ...
(0)2+5+12+31+86+249 + -
(c) 10 +23+ 60+ 169 + 494 + -
(d) 9 + 22 + 59 + 168 + 493 + ---
e)7+10+14+20+30+48+82+ -
(f)4+10+20+35+56+84+120+ -

I11. Recurrence series
Problems:
1) Find the nt* term of the recurring series 3 + 4x + 6x% + 10x3 + ---
Solution:
The given series has four terms. So let the scale of relation be 1 + px + gx2.
a+ bx

The generating function is ———
g & 1+ px + qx?

a + bx
i—
1+ px + gx?
Sa+bx=(1+px+qx*)(3+4x + 6x% + 10x3 + )
= a+bx =3+ 4x + 6x% + 10x3 + 3px + 4px? + 6px3
+10px* + 3qx? + 4qx3 + 6gx* + 10gx°
>a+bx=3+@+3p)x+ (6+4p+3¢)x*+ (10 + 6p + 4q)x3 + -

=3+ 4x + 6x% + 10x> + -

a=3;b=4+3p;6+4p+3q=0;10+6p+4q=0 ———(1)
On solving the above equation, we have,p = —=3;q = 2;b = —-5;A = —-1;B = —2.
3 —5x 1 2

S x—DD) . 1-2x 1=

3 —5x
>—— —=(1-2x)"'+2(1-x)"!
2x = DD ( x)7+2(1—x)
3 —5x
=S =142 2x)2 + ... 2) 4+ -+ 2(1 24 .. noy..
22— DD +2x+2x) + -+ )"+ -+ 2(1+x+x°+ -+ X+ 0)
The general term of U,, = coefficient of x™ in the expansion =2" + 2.

2) Find the n*" term of the recurring series
(8 1+3+7+13+21+31+ - [Hint:Consider the given as 1 + 3x + 7x% + 13x% + 21x* + 31x5 + -]
(b)2+6+14+30+ -
(€) 2+ 7x +25x% +91x3 + -
(d)1+5x+9x%+13x3 + -
(e) 2+3x+5x%+9x3 + -
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